Graphing Absolute Value Equations College Prep Algebra

All of the graphs in this activity are based on the equation $y=|x|$. The graph of this function is shown below. This is called the "parent graph" for $y=|x|$. All graphs for absolute value functions begin with this graph.

1. Observe the graphs and equations and answer the questions that follow.
A. $y=|x+2|$
B. $y=|x-3|$
C. $y=|x-4|$

2. Pretend that each of the graphs above began with the parent graph at the top of this page. Describe how these graphs "changed" the graph of $y=|x|$ in the blanks below. Use the word shift in your description.
A. \qquad B. \qquad C. \qquad
D. $y=|x+1|$

D. \qquad
3. Predict: How will each graph shift for the equations below?

E: $y=|x-1|$ \qquad
$\mathrm{F}: \quad y=|x+3|$ \qquad

G: $y=|x-2|$ \qquad
4. Graph $y=|x-2|$ without a calculator. Check your answer with a graphing calculator.

Answer this question during class discussion:
How does the number inside the absolute value, change the graph?

5. Observe the graphs and equations and answer the questions that follow.
A. $y=|x|+1$

B. $y=|x|-2$

C. $y=|x|+3$

6. Pretend that each of the graphs above began with the parent graph at the top of this page. Describe how these graphs "changed" the graph of $y=|x|$ in the blanks below. Use the word shift in your description.
A. \qquad
B. \qquad C. \qquad
7. Predict: How will each graph shift for the equations below?

E: $y=|x|+2$ \qquad
$\mathrm{F}: \quad y=|x|-4$ \qquad

G: $y=|x|-5$ \qquad
8. Graph $y=|x|-3$ without a calculator. Check your answer with a graphing calculator.

Answer this question during class discussion:
How does the number outside the absolute value, change the graph?

9. What do you think the negative sign in the equation $y=-|x|$ will do to the graph? Use your graphing calculator to check your prediction and draw the graph.

Answer this question during class discussion:
How does the negative sign outside the absolute value, change the graph?
10. Determine the slopes of the lines on the right side of each graph. $m=$ Notice this is the same number in front of all of the absolute values.

Determine the slopes of the lines on the left side of each graph. $m=$ \qquad
Notice this is the opposite of the right side.
11. Observe the graphs and equations and answer the questions that follow.
A. $y=2|x|$

B. $y=3|x|$

C. $y=\frac{1}{2}|x|$

12. Pretend that each of the graphs above began with the parent graph at the top of this page. Describe how these graphs "changed" the graph of $y=|x|$ in the blanks below.
A. \qquad
B. \qquad C. \qquad
D. $y=\frac{1}{3}|x|$

D.
13. A and B above are called stretches, while C and D are shrinks. Predict: How will each graph stretch or shrink below?

E: $y=6|x|$

F: $y=\frac{1}{4}|x|$
14. Graph $y=4|x|$ without a calculator. Check your answer with a graphing calculator.

Answer this question during class discussion:
How does the number in front of the absolute value, change the graph?

15. Look at the graphs of A, B, and E . What are the slopes of the right side of each graph? How does the slope relate to each equation? \qquad
16. Look at the graphs of C, D, and F . What are the slopes of the right side of each graph?

How does the slope relate to each equation? \qquad
17. Describe the transformations (changes) for the graphs below. Check your answers on a calculator.
A. $y=|x+2|-3$
B. $y=-|x-3|+2$
C. $y=2|x+1|$
D. $y=\frac{1}{2}|x|-1$
E. $y=3|x-4|+2$

