Coordinate Plane

(x, y)
Example 1
Graph.
A $(-3,4)$
B $(0,-2)$
C $(2,-1)$
D $(4,1)$
E ($-3,-2$)
F $(-5,0)$

Pythagorean Theorem
$a^{2}+b^{2}=c^{2}$

Example 2

$\underbrace{\text { Solve }}_{3}$

Example 3
Solve

Distance Formula
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example 4

Find the distance.
a. $(-7,4)(3,-6)$
b. $(4,8)(-2,0)$

Midpoint Formula
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Example 5

Find the midpoint.
a. $(3,-2)(5,6)$
b. $(4,9)(7,-1)$

Equation for a Circle
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Center: (h, k)
Radius: r

Example 1

Draw each circle.

Example 2

Write the equation of each circle.
a. Center $=(-3,4), r=5$
b. Center $=(-1,-6)$, passes through (3, -6)

Linear Equation in Two Variables
$\mathrm{A} x+\mathrm{B} y=\mathrm{C}$

Example 3

Graph each equation.
a. $2 x+3 y=6$

b. $2 x-5 y=15$

c. $y=-5$

d. $x=3$

Function - a set of ordered pairs in which no two pairs have the same first coordinate and different second coordinates.

Example 1

Given the figure below, answer the following.
a. Write the perimeter as a function of the length of a side.
b. Write the area as a function of the diagonal.

Domain - the set of all first coordinates of the ordered pairs (x-value).
$\underline{\text { Range }}$ - the set of all second coordinates of the ordered pair (y-value).

Example 2

Graph each function and state the domain and range.
a. $y=x^{2}$

b. $y=|x|+4$

c. $y=\sqrt{x-10}$

Example 3

Let $f(x)=2 x^{2}+1, g(x)=4 x$, and $h(x)=x-5$. Find each.
a. $f(5)$
b. $\mathrm{h}(7)$
c. $g(-3)$

> Graph Review
> §P. 2 (Day 2)

Graph each and find the Domain and Range.

Example 1
$y=x^{2}-3$

Example 3
$y=\sqrt{x}-4$

Example 5
$y=(x+7)^{2}-3$

Example 7
$y=-3|x|+1$

Example 2
$y=2|x|$

Example 4

Example 6
$y=-\sqrt{x-3}$

Example 8

$y=-2 x^{2}+3$

Families of Functions, Transformations, and Symmetry
§P. 3

Graph each.
Example 1
$f(x)=3 x^{2}$ and $g(x)=-3 x^{2}$

Example 2

$f(x)=x^{3}$ and $g(x)=-x^{3}$

Example 3

$$
f(x)=x^{2} \text { and } g(x)=x^{2}+5
$$

Multiple Transformations

1. Horizontal Translation
2. Vertical Stretch or Vertical Shrink
3. Reflection
4. Vertical Translation

$$
y=x^{2} \quad y=3 x^{2}
$$

Example 4

Identify, without graphing, what type of transformation(s) are indicated by each equation.
a. $f(x)=-x^{2}+1$
b. $f(x)=(x+2)^{2}$
c. $f(x)=-(x-2)^{2}+5$
d. $f(x)=|x+3|-2$

Composition of Functions - if f and g are two functions, the composition of f and g is a function defined by:

$$
(f \circ g)(x)=f(g(x))
$$

Example 1

If $f(x)=2 x+3, g(x)=\sqrt{x}$, and $h(x)=x^{2}$, find each.
a. $(f \circ \mathrm{~g})(16)$
b. $g(h(25))$
c. $h(f(-3))$

Example 2

Use the two given functions to write y as a function of x.
a. $y=2 b+1, b=2 x+3$
b. $y=t^{2}-2, t=x-1$

Inverse - the inverse of a one-to-one function f is the function f^{-1} where the ordered pair of f^{-1} are obtained by interchanging the coordinates in each ordered pair of f.

Example 3

Find the inverse of each function.
a. $y=2 x^{2}+3$
b. $y=\sqrt{x+4}$

Pg 36, 1-20, 27-34

If two functions are inverses of one another, then: $f\left(f^{-1}(x)\right)=x=f^{-1}(f(x))$.
Determine whether each pair of functions are inverses.

Example 1

$f(x)=2 x-1, g(x)=\frac{1}{2} x+\frac{1}{2}$

Example 2

$f(x)=3 x+6, f^{-1}(x)=\frac{x-6}{3}$

Graphs of f and f^{-1}.

Example 3

Find the inverse of $f(x)=\sqrt{x-1}$ and graph both f and f^{-1} on the same coordinate plane.

Pg 36, 39-56, 63-66

