The Cartesian Coordinate System §P.1

a. (3, -2) (5, 6) b. (4, 9) (7, -1)

The Cartesian Coordinate System §P.1 (Day 2)

Equation for a Circle

 $(x - h)^{2} + (y - k)^{2} = r^{2}$ Center: (h, k)Radius: r

Example 1

Draw each circle.

Example 2

Write the equation of each circle.

a. Center = (-3, 4), r = 5

b. Center = (-1, -6), passes through (3, -6)

<u>Linear Equation in Two Variables</u> Ax + By = C

Example 3

Graph each equation.

_							_			•								
									14	P.								
							1											
- H		_			-		-				_			_			-	-
- H		-									_			-				-
		-		-	-						_			-		-	-	
-	-	-	_	-	-	-	-	-		-	-	-	-	-	_	-	-	-
- F	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
- H	-	-	-	-	-	-	-	-	H		-	-	-	-	-	-	-	-
- H	-	-	-	-	-	-	-	-	H		-		-	-	-	-	-	-
- H	-	-	-	-	-	-	-	-	H		-	-	-	-	-	-	-	-
	-	_	-	-	-	-	-	-	H		_	-	-	_	-	-	-	-
- H	-	_	_	-	-	_	-	-	H		-		-	-	-	-	-	-
E																		
E																		
E																		

Functions §P.2

 $\underline{Function}$ – a set of ordered pairs in which no two pairs have the same first coordinate and different second coordinates.

Example 1

Given the figure below, answer the following.

a. Write the perimeter as a function of the length of a side.

b. Write the area as a function of the diagonal.

<u>Domain</u> – the set of all first coordinates of the ordered pairs (*x*-value).

<u>Range</u> – the set of all second coordinates of the ordered pair (y-value).

Example 2

Graph each function and state the domain and range.

Example 3

Let $f(x) = 2x^2 + 1$, g(x) = 4x, and h(x) = x - 5. Find each.

a. f(5) b. h(7) c. g(-3)

Graph each and find the Domain and Range. Example 1

Example 5

Example 7

Example 4

No Homework!!!!!

Families of Functions, Transformations, and Symmetry §P.3

Graph each. **Example 1**

$$f(x) = 3x^2$$
 and $g(x) = -3x^2$

Example 3

Multiple Transformations

- 1. Horizontal Translation
- 2. Vertical Stretch or Vertical Shrink
- 3. Reflection
- 4. Vertical Translation

Example 4

Identify, without graphing, what type of transformation(s) are indicated by each equation.

a.
$$f(x) = -x^2 + 1$$

b. $f(x) = (x+2)^2$

c.
$$f(x) = -(x-2)^2 + 5$$

d. $f(x) = |x+3| - 2$

Example 2

$$f(x) = x^3$$
 and $g(x) = -x^3$

Compositions and Inverses §P.4

<u>Composition of Functions</u> – if *f* and *g* are two functions, the composition of f and g is a function defined by:

$$(f \circ g)(x) = f(g(x))$$

Example 1

If f(x) = 2x + 3, $g(x) = \sqrt{x}$, and $h(x) = x^2$, find each.

a. $(f \circ g)(16)$ b. g(h(25)) c. h(f(-3))

Example 2

Use the two given functions to write y as a function of x.

a. y = 2b + 1, b = 2x + 3b. $y = t^2 - 2$, t = x - 1

<u>Inverse</u> – the inverse of a one-to-one function f is the function f^{-1} where the ordered pair of f^{-1} are obtained by interchanging the coordinates in each ordered pair of f.

Example 3

Find the inverse of each function.

a. $y = 2x^2 + 3$ b. $y = \sqrt{x+4}$

Pg 36, 1-20, 27-34

Composition and Inverses §P.4 (Day 2)

If two functions are inverses of one another, then: $f(f^{-1}(x)) = x = f^{-1}(f(x))$.

Determine whether each pair of functions are inverses. **Example 1**

Example 1

$$f(x) = 2x - 1, g(x) = \frac{1}{2}x + \frac{1}{2}$$

Example 2
 $f(x) = 3x + 6, f^{-1}(x) = \frac{x - 6}{3}$

Graphs of f and f^{-1} .

Example 3

Find the inverse of $f(x) = \sqrt{x-1}$ and graph both f and f^{-1} on the same coordinate plane.

Pg 36, 39-56, 63-66