College Prep Algebra

Chapter P Notes

Section P.1: The Real Number System

Targets: I can answer questions in set notation accurately.
I can answer questions in interval notation accurately.

The Real Number System

Natural Numbers - $\{1,2,3,4,5,6, \ldots\}$

Whole Numbers - All the natural numbers including $0 ;\{0,1,2,3,4,5,6, \ldots\}$
Integers - $\{\ldots,-1,-2,-3,0,1,2,3 \ldots\}$
Rational Numbers $=\left\{\frac{p}{q}\right.$, where p and q are intergers and $\left.q \neq 0\right\}$

- Rational numbers can be written as a fraction or a decimal. If written as a decimal it will be either a terminating decimal such as 0.65 or a repeating decimal such as $0.218181818 \ldots$

Irrational Numbers - numbers that cannot be expressed as terminating or repeating decimals.

Properties of Real Numbers

Let a, b, and c be real numbers.

	$\underline{\text { Addition Properties }}$	Multiplication Properties
Closure	$a+b$ is a unique real number.	$a b$ is a unique real number.
Commutative	$(a+b=b+a$	$a b=b a$
Associative	There exists a unique real number 0 such that $a+0=0+a=a$.	There exists a unique real number 1 such that $a \cdot 1=1 \cdot a=a$.
Identity	For each real number a, there is a unique real number $-a$ such that $a+(-a)=(-a)+a=0$.	For each nonzero real number a, there is a unique real number $\frac{1}{a}$ such that
Inverse	$a(b+c)=a b+a c$	$a\left(\frac{1}{a}\right)=\left(\frac{1}{a}\right) a=1$.
Distributive		

Properties of Equality

Let a, b, and c be real numbers.

Reflexive	$a=a$
Symmetric	If $a=b$, then $b=a$.
Transitive	If $a=b$ and $b=c$, the $a=c$.
Substitution	If $a=b$, then a may be replaced by b in any expression that involves a.

Set Notation

Element (\in) - every member of a set is called an element. Ex: If $C=\{1,5,7\}$, then the elements of C are 1,5 , and 7 . The notation $1 \in C$ is read " 1 is an element of C."

Subset $(\subseteq)-$ Set A is a subset of B if every \in in A is also an \in of B . The notation $A \subseteq B$ is read " A is a subset of B ." Ex: $A=\{1,2,3\}$ and $B=\{$ natural numbers $\}$

Empty Set or Null Set (\varnothing) is a set that contains no elements. Ex: The set of people who have run a 2-minute mile is the empty set.

Finite Set - all \in of the set can be listed. Ex: The set of natural numbers less than 6 is $\{1,2,3,4,5\}$.
Infinite Set - All the elements of the set cannot be listed. Ex: The set of all integers.
Set-builder Notation - The set of real numbers greater than 2 is written; $\{x \mid x>2, x \in$ real numbers $\}$ and is read "the set of x such that x is greater than 2 and x is an element of real numbers.

Shortened form: $\{x \mid x>2\}$ for this we assume that x is a real number.

List the four smallest elements of each set.

1. $\left\{n^{3} \mid n \in\right.$ natural numbers $\}$
2. $\left\{y \mid y=x^{2}-1, x \in\right.$ integers $\}$

Union and Intersection of Sets

Union $(\cup)-$ Written $A \cup B$, is the set of all elements that belong to either A or B . In set-builder notation, this is written $A \cup B=\{x \mid x \in A$ or $x \in B\}$.

Intersection (\cap) - Written $A \cap B$, is the set of all elements that are common to both A and B. In set-builder notation, this is written $A \cap B=\{x \mid x \in A$ and $x \in B\}$.

Examples:

Find the intersection or union given $A=\{0,2,4,6,10,12\}, B=\{0,3,6,12,15\}, C=\{1,2,3,4,5,6,7\}$, and $D=\{18,20,22\}$.
\qquad
3. $A \cup C$
4. $B \cap D$ \qquad
5. $A \cap(B \cup C)$ \qquad 6. $B \cup(A \cap C)$ \qquad
< or > we will now us (or) instead of an open circle. $\quad \leq$ or \geq we will not us $[$ or $]$ instead of a closed circle.

- (a, b) represents all real numbers between a and b. This is an open interval. In set-builder notation, we write $\{x \mid a<x<b\}$.
- $\quad[a, b]$ represents all real number between a and b, including a and b. This is a closed interval. In set-builder notation, we write $\{x \mid a \leq x \leq b\}$.
- (a, b] represents all real numbers between a and b, not including a but including b. This is a half-open interval. In set-builder notation, we write $\{x \mid a<x \leq b\}$.
- $[a, b)$ represents all real numbers between a and b, including a but not including b. This a half-open interval. In set-builder notation, we write $\{x \mid a \leq x<b\}$.
$(-\infty, a)$ represents all real numbers less than a.
(b, ∞) represents all real numbers greater than b.
$(-\infty, a]$ represents all real numbers less than or equal to a.
$[b, \infty)$ represents all real numbers greater than or equal to b.

Graph Intervals

Graph the following. Write 7 and 8 using interval notation. Write 9 and 10 using set-builder notation.
7. $\{x \mid x \leq-1\} \cup\{x \mid x \geq 2\}$
8. $\{x \mid x \geq-1\} \cap\{x \mid x<5\}$
9. $(-\infty, 0) \cup[1,3]$ \qquad 10. $[-1,3] \cap(1,5)$

Section P. 2 Notes: Integer and Rational Number Exponents

Targets: I can the properties of exponents to simplify and evaluate problems accurately.
I can evaluate and simplify problems with radicals and rational exponents accurately.

Exponents

Definition of b^{0} : For any nonzero real number b, $b^{0}=1$.

Definition of b^{-n} : If $b \neq 0$ and n is a natural number, then $b^{-n}=\frac{1}{b^{n}}$ and $\frac{1}{b^{-n}}=b^{n}$.

Properties of Exponents

If m, n, and p are integers and a and b are real numbers, then

Product: $b^{m} \cdot b^{n}=b^{m+n}$
Quotient: $\frac{b^{m}}{b^{n}}=b^{m-n}, b \neq 0$

$$
\left(b^{m}\right)^{n}=b^{m n}
$$

Power: $\left(a^{m} b^{n}\right)^{p}=a^{m p} b^{m p}$

$$
\left(\frac{a^{m}}{b^{n}}\right)^{p}=\frac{a^{m p}}{b^{n p}}, b \neq 0
$$

Evaluate.

1. $\left(-2^{4}\right)(-3)^{2}$ 2. $\frac{(-4)^{-3}}{(-2)^{-5}}$
2. $-\pi^{0}$

Simplify.
4. $\left(5 x^{2} y\right)\left(-4 x^{3} y^{5}\right)$
5. $\left(3 x^{2} y z^{-4}\right)^{3}$
6. $\frac{-12 x^{5} y}{18 x^{2} y^{6}}$
7. $\left(\frac{4 p^{2} q}{6 p q^{4}}\right)^{-2}$

Write the number in scientific notation.
8. $7,430,000$
9. 0.00000078

Change the number from scientific notation to decimal notation.
10. 3.5×10^{5}
11. 2.51×10^{-8}

Simplifying Scientific notation

12. $\left(9.5 \times 10^{4}\right)\left(5.7 \times 10^{12}\right)$
13. $\frac{3.8 \times 10^{8}}{3.0 \times 10^{8}}$

Day 2: Rational Exponents and Radicals
$25^{\frac{1}{2}}=\sqrt{25}$
$4^{\frac{3}{2}}=$ \qquad $=\sqrt{4^{3}}$
$64^{\frac{1}{3}}=\sqrt[3]{64}$
$81^{\frac{1}{4}}=$ \qquad
$5^{\frac{2}{5}}=$ \qquad
$(\sqrt[3]{5})^{2}=$ \qquad $=5^{\frac{2}{3}}$ $=\sqrt[5]{5^{2}}$

Definition of $\sqrt[n]{b^{n}}$:
If n is an even natural number and b is a real number, then $\sqrt[n]{b^{n}}=|b|$
If n is an odd natural number and b is a real number, then $\sqrt[n]{b^{n}}=b$
Simplify.

1. $64^{\frac{2}{3}}$
2. $32^{-\frac{3}{5}}$
3. $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$
4. $\left(2 x^{\frac{1}{3}} y^{\frac{3}{5}}\right)^{2}\left(9 x^{3} y^{\frac{3}{2}}\right)^{\frac{1}{2}}$
5. $\frac{\left(a^{\frac{3}{4}} b^{\frac{1}{2}}\right)^{2}}{\left(a^{\frac{2}{3}} b^{\frac{3}{4}}\right)^{3}}$
6. $\sqrt{48 x^{7} y^{2}}$
7. $\sqrt[3]{162 x^{4} y^{6}}$
8. $\sqrt[4]{32 x^{3} y^{4}}$

Day 3: Combining Radical Expressions: To combine like radicals they must have the same radicand and the same index.
Example: $3 \sqrt[3]{5 x y^{2}}-4 \sqrt[3]{5 x y^{2}}=$ \qquad
Simplify.

1. $2 \sqrt{2 x^{3}}+4 x \sqrt{8 x}$
2. $5 x \sqrt[3]{16 x^{4}}-\sqrt[3]{128 x^{7}}$
3. $2 b \sqrt[3]{16 b^{2}}+\sqrt[3]{128 b^{5}}$

Multiplying Radical Expressions

4. $(5 \sqrt{6}-7)(3 \sqrt{6}+4)$
5. $(3-\sqrt{x-7})^{2}, x \geq 7$

Rationalizing the Denominator: Recall you are not allowed to have a radical in the denominator.
Simplify.
6. $\frac{5}{\sqrt[3]{a}}$
7. $\sqrt{\frac{3}{32 y}}, y>0$
8. $\sqrt{\frac{5 x}{10 y}}$
9. $\frac{3+2 \sqrt{5}}{1-4 \sqrt{5}}$
10. $\frac{2+4 \sqrt{x}}{3-5 \sqrt{x}}, x>0$

Section P.3: Polynomials

Targets: I can simplify polynomials with different operations accurately.

	Examples:	Terms:	Degree:	Standard Form
Monomial	-8			
	z			
	$7 y$			
	$-12 a^{2} b c^{3}$			
Binomial	$2 x y-y^{2}$			
	$3 x^{4}-7$			
Trinomial	$2 x^{2}-3 x y+7 y^{2}$			
	$3 x^{2}+6 x-1$			
Polynomial	$5 x^{4}-6 x^{3}-8+5 x^{2}-7 x$			

Simplify.

1. $\left(3 x^{3}-2 x^{2}-6\right)+\left(4 x^{2}-6 x-7\right)$
2. $\left(6 x^{3}-3 x^{2}+5\right)(5 x+4)$
3. $(7 x-2)(5 x+4)$

Special Product Formulas

(Sum)(Difference)	$(x+y)(x-y)=x^{2}-y^{2}$
(Binomial) 2	$(x+y)^{2}=x^{2}+2 x y+y^{2}$
	$(x-y)^{2}=x^{2}-2 x y+y^{2}$

Simplify.

4. $(7 x+10)(7 x-10)$
5. $(3 x+4 y)^{2}$

Section P.4: Factoring

Targets: I can factor binomials and trinomials accurately.
I can factor by grouping or using special factors (difference of squares, difference or sum of perfect cubes, etc.). I can factor a trinomial that is quadratic in form.

Greatest Common Factor (GCF): Factor out the GCF

1. $-6 x^{2} y^{2}+3 x y^{2}$
2. $12 x^{3} y^{4}-24 x^{2} y^{5}+18 x y^{6}$
3. $(6 x-5)(4 x+3)-(4 x+3)(3 x-7)$

Factorization Theorem: The trinomial $a x^{2}+b x+c$, with integer coefficients a, b, and c, can be factored as the product of two binomials with integer coefficients if and only if $b^{2}-4 a c$ is a perfect square.

Factoring Trinomials: Factor

4. $x^{2}+7 x-18$
5. $x^{2}+7 x y+10 y^{2}$
6. $6 x^{2}-11 x+4$
7. $4 x^{2}-17 x-21$

Special Factors

Difference of 2 Perfect Squares	$a^{2}-b^{2}=(a+b)(a-b)$
Perfect Square Trinomials	$a^{2}+2 a b+b^{2}=(a+b)^{2}$
	$a^{2}-2 a b+b^{2}=(a-b)^{2}$
Sum or Difference of 2 Perfect Cubes	$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
	$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Factor.

1. $49 x^{2}-144$
2. $8 x^{3}+y^{3}$
3. $16 m^{2}-40 m n+25 n^{2}$
4. $9 x^{2}-121$
5. $12 x^{2}+36 x+27$
6. $a^{3}-64$
7. $x^{2}-64$
8. $x^{4}+8 x$

Factor a Polynomial that is Quadratic in Form

A trinomial can be expressed as quadratic trinomial by making suitable variable substitutions. A trinomial is quadratic in form if it can be written as, $a u^{2}+b u+c$.

Factor.

1. $6 x^{2} y^{2}-x y-12$
2. $x^{4}+5 x^{2}-36$
3. $2 x^{4}-15 x^{2}-27$

Factoring by Grouping

Factor.
4. $p^{2}+p-q-q^{2}$
5. $2 a x+4 b x-3 a y-6 b y$
6. $a^{2}+10 a b+25 b^{2}-c^{2}$

Section P.5: Rational Expressions

Target: I can simplify rational expressions, complex fractions, and fractions.
A rational expression is a fraction in which the numerator and denominator are polynomials.
Examples: $\frac{3}{x+1}$ and $\frac{x^{2}-4 x-21}{x^{2}-9}$
The domain of a rational expression is the set of all real numbers that can be used as replacements from the variables, except values that make the denominator zero.

Properties of Rational Expressions

For all rational expressions $\frac{P}{Q}$ and $\frac{R}{S}$, where $Q \neq 0$ and $S \neq 0$,
Equality: $\frac{P}{Q}=\frac{R}{S}$ if and only if $P S=Q R$
Equivalent expressions: $\frac{P}{Q}=\frac{P R}{Q R}, R \neq 0$
Sign: $-\frac{P}{Q}=\frac{-P}{Q}=\frac{P}{-Q}$

Simplify

1. $\frac{7+20 x-3 x^{2}}{2 x^{2}-11 x-21}$
2. $\frac{6 x^{3}-15 x^{2}}{12 x^{2}-30 x}$
3. $\frac{3 x^{2}+10 x-8}{8-14 x+3 x^{2}}$
4. $\frac{4-x^{2}}{x^{2}+2 x-8} \cdot \frac{x^{2}-11 x+28}{x^{2}-5 x-14}$
5. $\frac{x^{2}+6 x+9}{x^{3}+27} \div \frac{x^{2}+7 x+12}{x^{3}-3 x^{2}+9 x}$
6. $\frac{2 x+1}{x-3}+\frac{x+2}{x+5}$
7. $\frac{39 x+36}{x^{2}-3 x-10}-\frac{23 x-16}{x^{2}-7 x+10}$

Simplify
8. $\frac{x+3}{x-2}-\frac{x+4}{x-1} \div \frac{x^{2}+5 x+4}{x^{2}+4 x-5}$
9. $\frac{x+4}{x-5}+\frac{x-3}{x-4} \cdot \frac{x^{2}-5 x+4}{x^{2}-9}$
10. $\frac{\frac{2}{x-2}+\frac{1}{x}}{\frac{3 x}{x-5}-\frac{2}{x-5}}$
11. $4-\frac{2 x}{2-\frac{x-2}{x}}$

Simplify a fraction.
12. $\frac{c^{-1}}{a^{-1}+b^{-1}}$
13. $\frac{x^{-1}}{y^{-1}}+\frac{y^{-1}}{x^{-1}}$

Section P.6: Complex Numbers

Targets: I can write complex numbers in standard form.
I can add, subtract, multiply, and divide complex numbers accurately.
I can evaluate the power of i.

Definition of an Imaginary Number

If a is a positive real number, then $\sqrt{-a}=i \sqrt{a}$. The number $i \sqrt{a}$ is called an imaginary number.

Definition of a Complex Number

A complex number is a number of the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$. The number a is the real part of $a+b i$, and b is the imaginary part. Examples:

Powers of $i: i^{1}=i, \quad i^{2}=-1, \quad i^{3}=-i, \quad i^{4}=1$

Write the complex number in standard form.

1. $7+\sqrt{-45}$
2. $4-\sqrt{-72}$

Simplify.

3. $(7-2 i)+(-2+4 i)$
4. $(-9+4 i)-(2-6 i)$
5. $3 i(2-5 i)$
6. $(3-4 i)(2-5 i)$
7. $\frac{3-6 i}{2 i}$
8. $\frac{3+2 i}{5-i}$

Powers of i
If n is a positive integer, then $i^{n}=i^{r}$, which is the remainder of the division of n by 4 .

Evaluate

9. i^{153}
10. i^{214}
11. i^{19}
12. i^{12}
