College Prep Algebra

Chapter P Notes

Section P.1: The Real Number System

Targets: I can answer questions in set notation accurately.

I can answer questions in interval notation accurately.

The Real Number System

Natural Numbers - $\{1, 2, 3, 4, 5, 6, ...\}$

Whole Numbers – All the natural numbers including 0; $\{0,1,2,3,4,5,6,...\}$

Integers - $\{..., -1, -2, -3, 0, 1, 2, 3...\}$

Rational Numbers = $\left\{ \frac{p}{q}, \text{ where } p \text{ and } q \text{ are intergers and } q \neq 0 \right\}$

• Rational numbers can be written as a fraction or a decimal. If written as a decimal it will be either a terminating decimal such as 0.65 or a repeating decimal such as 0.218181818...

Irrational Numbers – numbers that *cannot* be expressed as terminating or repeating decimals.

Properties of Real Numbers

Let *a*, *b*, and *c* be real numbers.

	Addition Properties	Multiplication Properties
Closure	a+b is a unique real number.	ab is a unique real number.
Commutative	a+b=b+a	ab = ba
Associative	(a+b)+c = a+(b+c)	(ab)c = a(cb)
Identity	There exists a unique real number 0 such that $a + 0 = 0 + a = a$.	There exists a unique real number 1 such that $a \cdot 1 = 1 \cdot a = a$.
Inverse	For each real number <i>a</i> , there is a unique real number $-a$ such that a + (-a) = (-a) + a = 0.	For each <i>nonzero</i> real number <i>a</i> , there is a unique real number $\frac{1}{a}$ such that $a\left(\frac{1}{a}\right) = \left(\frac{1}{a}\right)a = 1.$
Distributive	a(b+c) = ab + ac	

Properties of Equality

Let *a*, *b*, and *c* be real numbers.

Reflexive	a = a
Symmetric	If $a = b$, then $b = a$.
Transitive	If $a = b$ and $b = c$, the $a = c$.
Substitution	If $a = b$, then a may be replaced by b in any expression
	that involves <i>a</i> .

Element (\in) – every member of a set is called an element. Ex: If $C = \{1, 5, 7\}$, then the elements of C are 1, 5, and 7.

The notation $1 \in C$ is read "1 is an element of C."

Subset (\subseteq) – Set A is a subset of B if every \in in A is also an \in of B. The notation $A \subseteq B$ is read "A is a subset of B."

Ex: $A = \{1, 2, 3\}$ and $B = \{$ natural numbers $\}$

Empty Set or **Null Set** (\emptyset) is a set that contains no elements. Ex: The set of people who have run a 2-minute mile is the empty set.

Finite Set – all \in of the set can be listed. Ex: The set of natural numbers less than 6 is $\{1, 2, 3, 4, 5\}$.

Infinite Set – All the elements of the set cannot be listed. Ex: The set of all integers.

Set-builder Notation – The set of real numbers greater than 2 is written; $\{x | x > 2, x \in \text{real numbers}\}$ and is read "the set of x such that x is greater than 2 and x is an element of real numbers.

Shortened form: $\{x | x > 2\}$ for this we assume that x is a real number.

List the four smallest elements of each set.

- 1. $\left\{ n^3 \mid n \in \text{natural numbers} \right\}$
- 2. $\{y | y = x^2 1, x \in \text{integers}\}$

Union and Intersection of Sets

Union (\cup) – Written $A \cup B$, is the set of all elements that belong to either A or B. In set-builder notation, this is written $A \cup B = \{x | x \in A \text{ or } x \in B\}$.

Intersection (\cap) - Written $A \cap B$, is the set of all elements that are common to both A and B. In set-builder notation, this is written $A \cap B = \{x | x \in A \text{ and } x \in B\}$.

Examples:

Find the intersection or union given $A = \{0, 2, 4, 6, 10, 12\}$, $B = \{0, 3, 6, 12, 15\}$, $C = \{1, 2, 3, 4, 5, 6, 7\}$, and

 $D = \{18, 20, 22\}.$

3. *A* ∪ *C*

4. $B \cap D$

5. $A \cap (B \cup C)$ _____

6. $B \cup (A \cap C)$ _____

Interval Notation

```
< or > we will now us ( or ) instead of an open circle. \leq or > we will not us [or] instead of a closed circle.
```

- (a,b) represents all real numbers between a and b. This is an **open interval**. In set-builder notation, we write • $\left\{ x \middle| a < x < b \right\}.$
- [a,b] represents all real number between a and b, including a and b. This is a **closed interval**. In set-builder notation, we write $\{x | a \le x \le b\}$.
- (a,b] represents all real numbers between a and b, not including a but including b. This is a half-open interval. In set-builder notation, we write $\{x | a < x \le b\}$.
- [a,b) represents all real numbers between a and b, including a but not including b. This a half-open interval. In set-builder notation, we write $\{x | a \le x < b\}$.

 $(-\infty, a)$ represents all real numbers less than a.

 (b,∞) represents all real numbers greater than b.

 $\left(-\infty,a
ight]$ represents all real numbers less than or equal to a.

 $[b,\infty)$ represents all real numbers greater than or equal to b.

Graph Intervals

Graph the following. Write 7 and 8 using interval notation. Write 9 and 10 using set-builder notation.

7. $\{x | x \le -1\} \cup \{x | x \ge 2\}$ 8. $\{x | x \ge -1\} \cap \{x | x < 5\}$

9.(-∞,0)∪[1,3]_____ 10.[-1,3]∩(1,5)_____

Section P.2 Notes: Integer and Rational Number Exponents

Targets: I can the properties of exponents to simplify and evaluate problems accurately.

I can evaluate and simplify problems with radicals and rational exponents accurately.

Exponents

Definition of b^0 : For any nonzero real number b, $b^0 = 1$.

Definition of b^{-n} : If $b \neq 0$ and n is a natural number,

then
$$b^{-n} = \frac{1}{b^n}$$
 and $\frac{1}{b^{-n}} = b^n$.

Properties of Exponents

If m , n , and $\,p\,$ are integers and $a\,$ and $b\,$ are real numbers, then

Product: $b^m \bullet b^n = b^{m+n}$

Quotient:
$$\frac{b^m}{b^n} = b^{m-n}, \ b \neq 0$$

$$(b^{m})^{n} = b^{mn}$$
Power: $(a^{m}b^{n})^{p} = a^{mp}b^{mp}$

$$\left(\frac{a^{m}}{b^{n}}\right)^{p} = \frac{a^{mp}}{b^{np}}, \ b \neq 0$$

Evaluate.

1.
$$(-2^4)(-3)^2$$
 2. $\frac{(-4)^{-3}}{(-2)^{-5}}$ 3. $-\pi^0$

Simplify.

4.
$$(5x^2y)(-4x^3y^5)$$
 5. $(3x^2yz^{-4})^3$ 6. $\frac{-12x^5y}{18x^2y^6}$ 7. $(\frac{4p^2q}{6pq^4})^{-2}$

Scientific Notation

Write the number in scientific notation.

8. 7,430,000	9. 0.00000078	notation.		
		10. 3.5×10^5	11. 2.51×10^{-8}	

Change the number from scientific notation to decimal

Simplifying Scientific notation

12.
$$(9.5 \times 10^4)(5.7 \times 10^{12})$$
 13. $\frac{3.8 \times 10^8}{3.0 \times 10^8}$

Day 2: Rational Exponents and Radicals

Definition of $\sqrt[n]{b^n}$:
If n is an even natural number and b is a real number, then $\sqrt[n]{b^n} = b $
If <i>n</i> is an odd natural number and <i>b</i> is a real number, then $\sqrt[n]{b^n} = b$
Cimelify.

Simplify.

1.
$$64^{\frac{2}{3}}$$
 2. $32^{-\frac{3}{5}}$ 3. $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$ 4. $\left(2x^{\frac{1}{3}}y^{\frac{3}{5}}\right)^2 \left(9x^3y^{\frac{3}{2}}\right)^{\frac{1}{2}}$

Day 3: Combining Radical Expressions: To combine like radicals they must have the same radicand and the same index.

Example: $3\sqrt[3]{5xy^2} - 4\sqrt[3]{5xy^2} =$ _____ Simplify. 1. $2\sqrt{2x^3} + 4x\sqrt{8x}$ 2. $5x\sqrt[3]{16x^4} - \sqrt[3]{128x^7}$ 3. $2b\sqrt[3]{16b^2} + \sqrt[3]{128b^5}$

Multiplying Radical Expressions

4.

$$(5\sqrt{6}-7)(3\sqrt{6}+4)$$
 5. $(3-\sqrt{x-7})^2, x \ge 7$

<u>Rationalizing the Denominator</u>: Recall you are not allowed to have a radical in the denominator.

Simplify.

6.
$$\frac{5}{\sqrt[3]{a}}$$
 7. $\sqrt{\frac{3}{32y}}, y > 0$ 8. $\sqrt{\frac{5x}{10y}}$

9. $\frac{3+2\sqrt{5}}{1-4\sqrt{5}}$

10.
$$\frac{2+4\sqrt{x}}{3-5\sqrt{x}}, x > 0$$

Section P.3: Polynomials

Targets: I can simplify polynomials with different operations accurately.

	Examples:	Terms:	Degree:	Standard Form
Monomial	-8			
	z			
	7 y			
	$-12a^2bc^3$			
Binomial	$2xy - y^2$			
	$3x^4 - 7$			
Trinomial	$2x^2 - 3xy + 7y^2$			
	$3x^2 + 6x - 1$			
Polynomial	$5x^4 - 6x^3 - 8 + 5x^2 - 7x$			

Simplify.

1.
$$(3x^3 - 2x^2 - 6) + (4x^2 - 6x - 7)$$

2. $(6x^3 - 3x^2 + 5)(5x + 4)$
3. $(7x - 2)(5x + 4)$

Special Product Formulas

(Sum)(Difference)	$(x+y)(x-y) = x^2 - y^2$
(Binomial) ²	$(x+y)^2 = x^2 + 2xy + y^2$
	$(x-y)^2 = x^2 - 2xy + y^2$

Simplify.

4. $(7x+10)(7x-10)$	5. $(3x+4y)^2$
---------------------	----------------

Section P.4: Factoring

Targets: I can factor binomials and trinomials accurately.

I can factor by grouping or using special factors (difference of squares, difference or sum of perfect cubes, etc.).

I can factor a trinomial that is quadratic in form.

Greatest Common Factor (GCF): Factor out the GCF

1.
$$-6x^2y^2 + 3xy^2$$

2. $12x^3y^4 - 24x^2y^5 + 18xy^6$
3. $(6x-5)(4x+3) - (4x+3)(3x-7)$

Factorization Theorem: The trinomial $ax^2 + bx + c$, with integer coefficients a, b, and c, can be factored as the product of two binomials with integer coefficients if and only if $b^2 - 4ac$ is a perfect square.

Factoring Trinomials: Factor

4. $x^2 + 7x - 18$ 5. $x^2 + 7xy + 10y^2$ 6. $6x^2 - 11x + 4$ 7. $4x^2 - 17x - 21$

Special Factors

Difference of 2 Perfect Squares	$a^2 - b^2 = (a+b)(a-b)$
Perfect Square Trinomials	$a^2 + 2ab + b^2 = \left(a + b\right)^2$
	$a^2 - 2ab + b^2 = \left(a - b\right)^2$
Sum or Difference of 2 Perfect Cubes	$a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$
	$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$

Factor.

1. $49x - 144$ 2. $8x + y$ 3. $10m - 40mn + 23n$ 4. $9x - 11$	1. $49x^2 - 144$	2. $8x^3 + y^3$	3. $16m^2 - 40mn + 25n^2$	4. $9x^2 - 12$
---	------------------	-----------------	---------------------------	----------------

5.	$12x^2 + 36x + 27$	6. $a^3 - 64$	7. $x^2 - 64$	8. $x^4 + 8x$
э.	$12\lambda + 50\lambda + 21$	0. 4 01	r λ 01	U. <i>A</i> 107

Factor a Polynomial that is Quadratic in Form

A trinomial can be expressed as quadratic trinomial by making suitable variable substitutions. A trinomial is **quadratic in** form if it can be written as, $au^2 + bu + c$.

Factor.

1.
$$6x^2y^2 - xy - 12$$

2. $x^4 + 5x^2 - 36$
3. $2x^4 - 15x^2 - 27$

Factoring by Grouping

Factor.

4. $p^2 + p - q - q^2$ 5. 2ax + 4bx - 3ay - 6by6. $a^2 + 10ab + 25b^2 - c^2$

Section P.5: Rational Expressions

Target: I can simplify rational expressions, complex fractions, and fractions.

A rational expression is a fraction in which the numerator and denominator are polynomials.

Examples: $\frac{3}{x+1}$ and $\frac{x^2 - 4x - 21}{x^2 - 9}$

The **domain of a rational expression** is the set of all real numbers that can be used as replacements from the variables, except values that make the denominator zero.

Properties of Rational Expressions

For all rational expressions
$$\frac{P}{Q}$$
 and $\frac{R}{S}$, where $Q \neq 0$ and $S \neq 0$,
Equality: $\frac{P}{Q} = \frac{R}{S}$ if and only if $PS = QR$
Equivalent expressions: $\frac{P}{Q} = \frac{PR}{QR}$, $R \neq 0$
Sign: $-\frac{P}{Q} = \frac{-P}{Q} = \frac{P}{-Q}$

Simplify

1.
$$\frac{7+20x-3x^2}{2x^2-11x-21}$$
 2. $\frac{6x^3-15x^2}{12x^2-30x}$ 3. $\frac{3x^2+10x-8}{8-14x+3x^2}$

4.
$$\frac{4-x^2}{x^2+2x-8} \cdot \frac{x^2-11x+28}{x^2-5x-14}$$
 5. $\frac{x^2+6x+9}{x^3+27} \div \frac{x^2+7x+12}{x^3-3x^2+9x}$

6	2x+1 + x+2	39x + 36	23x - 16
0.	$\overline{x-3}$ $\overline{x+5}$	7. $\frac{1}{x^2 - 3x - 10}$	$\frac{1}{x^2 - 7x + 10}$

Simplify

0	<i>x</i> +3	<i>x</i> +4	$x^{2} + 5x + 4$	0	<u>x+4</u> _	<u>x-3</u>	$x^2 - 5x + 4$
о.	$\overline{x-2}$	$\overline{x-1}$	$\frac{1}{x^2 + 4x - 5}$	9.	x-5	<i>x</i> -4	$x^2 - 9$

10.
$$\frac{\frac{2}{x-2} + \frac{1}{x}}{\frac{3x}{x-5} - \frac{2}{x-5}}$$

$$11. \quad 4 - \frac{2x}{2 - \frac{x - 2}{x}}$$

Simplify a fraction.

12.
$$\frac{c^{-1}}{a^{-1}+b^{-1}}$$

13.
$$\frac{x^{-1}}{y^{-1}} + \frac{y^{-1}}{x^{-1}}$$

Section P.6: Complex Numbers

Targets: I can write complex numbers in standard form.

I can add, subtract, multiply, and divide complex numbers accurately.

I can evaluate the power of i.

Definition of an Imaginary Number

If *a* is a positive real number, then $\sqrt{-a} = i\sqrt{a}$. The number $i\sqrt{a}$ is called an **imaginary number**.

Definition of a Complex Number

A complex number is a number of the form a + bi, where a and b are real numbers and $i = \sqrt{-1}$. The number a is the real part of a + bi, and b is the imaginary part. Examples:

<u>Powers of</u> $i: i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

Write the complex number in standard form.

1.
$$7 + \sqrt{-45}$$
 2. $4 - \sqrt{-72}$

Simplify.

3.
$$(7-2i)+(-2+4i)$$

4. $(-9+4i)-(2-6i)$
5. $3i(2-5i)$

6.
$$(3-4i)(2-5i)$$

7. $\frac{3-6i}{2i}$
8. $\frac{3+2i}{5-i}$

Powers of *i* If *n* is a positive integer, then $i^n = i^r$, which is the remainder of the division of *n* by 4.

Evaluate

9.	<i>i</i> ¹⁵³	10. i^{214}	11. i^{19}	12 . <i>i</i> ¹²