Points, Lines, and Planes §1.1

 $\frac{Point}{ex.} - a \text{ location} \\ ex. \quad \bullet A \\ write as: A$

Line – made up of points and has no thickness or width.

<u>Collinear</u> – points on the same line. <u>Noncollinear</u> – points not on the same line.

<u>Plane</u> – flat surface made up of points; has no depth and extends infinitely in all directions.

Write as: plane ABC, plane *X*

<u>Coplanar</u> – points that lie on the same plane. <u>Noncoplanar</u> – points that do not lie on the same plane.

Example 1

Use the figure to answer.

- 1a. Name a line containing point K.
- b. Name a plane containing point L.
- c. Are points J, K, and M collinear?
- d. Are points K, L, and M coplanar?

Example 2

Name the geometric shape.

- 1. The paper you are writing on.
- 2. The tip of your pencil/pen.
- 3. The track from the ceiling tile.

Example 3 Draw and label a figure for each.

5. Plane R contains lines \overrightarrow{AB} and \overrightarrow{DE} which intersect at point P. Add point C which is noncollinear to lines \overrightarrow{AB} and \overrightarrow{DE} .

6. \overrightarrow{QR} on a coordinate plane contains Q (-2, 4) and R (4, -4). Add point T so that T is collinear with these points.

Example 4

Use the figure to answer.

7. How many planes appear in the figure?

- 8. Name 3 collinear points.
- 9. Are points A, B, C, and D coplanar?
- 10. Do \overrightarrow{BD} and \overrightarrow{AC} intersect? If so, where?

Worksheet 1.1

Distance and Midpoints §1.3

Distance between two points

a. Number Line

 $\overset{A}{\longleftrightarrow} \overset{B}{\longleftrightarrow} \overset{B}{\longleftrightarrow} \overset{}{\longleftrightarrow} \overset{}{$

b. Coordinate Plane

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Example 1

Use the number line to find GH.

Example 2

Find the distance between E(-4, 1) and F(3, -1).

<u>Midpoint (Segment)</u> – the point on the segment that divides the segment into two congruent segments. If X is the midpoint of AB, then $AX \cong BX$.

Example 3

Find the coordinates of the midpoint D if C(-6, 4) and E(8, 1).

Example 4

Find the coordinates of W if X(3, -5) is the midpoint of WY and Y has coordinates of (12, 1).

Example 5

What is the measure of PR if Q is the midpoint of PR.

Example 6 What is the measure of AB if B is the midpoint of AC?

Segment Bisector – any segment, line, or plane that intersects a segment at its midpoint.

BC bisects AD

Worksheet 1.3

Angle Measure §1.4

<u>Degree</u> – a unit of measurement used in measuring angles and arcs. An arc of a circle with a measure of 1° is $\frac{1}{360}$ of the entire circle.

<u>Ray</u> – part of a line that has one endpoint and extends infinitely in one direction.

Two opposite and collinear rays form a line

<u>Angle</u> – formed by two noncollinear rays that have a common endpoint.

 $\angle X$, $\angle YXZ$, $\angle ZXY$, or $\angle 3$

Use the figure to answer.

- 1. Name all angles that have B as a vertex.
- 2. Name the sides of $\angle 5$.
- 3. Write another name for $\angle 6$.

Angle Classifications

- 1. Right an angle measuring exactly 90° .
- 2. <u>Acute</u> an angle measuring greater than 0° and less than 90° . $0^{\circ} < x < 90^{\circ}$
- 3. <u>Obtuse</u> an angle measuring greater than 90° and less than 180° . $90^{\circ} < x < 180^{\circ}$

Use the figure to answer. Use the figure to $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

Approximate each angle and classify. 4. ∠TYV 5. ∠WYT

6. ∠TYU

 $\angle ABC \cong \angle DEF$

Solve each angle.

<u>Angle Bisector</u> – a ray that divides an angle into two congruent angles.

Worksheet 1.4

Angle Relationships §1.5

<u>Adjacent Angles</u> – two angles that lie in the same plane, have a common vertex and a common side, but no common interior points.

D

<u>Vertical Angles</u> – two nonadjacent angles formed by two intersecting lines.

Example 1

Use the figure to answer.

- a. Name adjacent angles.
- b. Name vertical angles.
- c. Name linear pairs.

<u>Complementary Angles</u> – two angles with measures that have a sum of 90° .

F

Е

<u>Supplementary Angles</u> – two angles with measures that have a sum of 180° .

Example 2

Find the measure of two complementary angles if the difference of the two angles is 16.

Example 3

Find the measure of two supplementary angles if the measure of one angle is 6 less than 5 times the measure of the other angle.

<u>Perpendicular</u> – lines, segments, or rays that form right angles.

Example 5

Determine if each statement can be justified from the figure.

a. $\angle VYT = 90^{\circ}$

- b. \angle TYW and \angle TYU are supplementary.
- c. $\angle VYW$ and $\angle TWS$ are adjacent angles.

Worksheet 1.5

Algebraic Proofs §2.6

Algebra Properties	
Reflexive Property:	a = a
Symmetric Property:	If $a = b$, then $b = a$
Transitive Property:	If $a = b$ and $b = c$, then $a = c$
Addition/Subtraction:	If $a = b$, then $a + c = b + c$
	a-c=b-c
Multiplication/Division:	If $a = b$, then $a \cdot c = b \cdot c$
	$\frac{a}{b} = \frac{b}{b}$
	C C
Substitution Property:	If $a = b$, then a may be replaced by b
Distributive Property:	$\mathbf{a}(\mathbf{b}+\mathbf{c}) = \mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{c}$

Name the property illustrated by each statement.	
a. If $5x = 20$, then $x = 4$	А.
b. If $12 = AB$, then $AB = 12$	В.
c. If $AB = BC$, and $BC = CD$, then $AB = CD$.	C.
d. If $y = 75$, and $m \angle A = y$, then $m \angle A = 75$	D.
e. If $4x + 2 = 5$, then $4x = 3$.	E.
f. If $-4(3x-4) = -12x + 16$	F.

Solve 2(5-3c) - 4(a+7) = 92

Statements	Reasons
1. $2(5-3a) - 4(a+7) = 92$	1.
2. $10 - 6a - 4a - 28 = 92$	2.
3.	3.
4.	4. Addition Property
5.	5. Division Property
6. a = -11	6.

2. Write a 2 column proof to show that if
$$\frac{7d+3}{4} = 6$$
, then d = 3.

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.
9.	9.

Segment and Angles are real numbers; therefore properties of real numbers can apply.

3. Given: AB = 16, AB = CDProve: CD = 16

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Worksheet 2.6

Parallel Lines and Transversals §3.1

Ε

F

Parallel Lines – coplanar lines that do not intersect.

<u>Skew Lines</u> – lines that do not intersect and are not coplanar.

Example 1

Use the figure to answer.

a. Name a plane parallel to plane AEH.

b. Name all segments parallel to CG.

c. Name all segments that intersect BC.

d. Name all segments that are skew to AE.

В

Transversals and Angles

Exterior Angles – angles on the outside of the lines.

Interior Angles – angles on the inside of the lines.

<u>Consecutive Interior Angles</u> – angles on the same side of the transve other.

transversal and next to each

н

G

D

С

<u>Alternate Interior Angles</u> – interior angles on opposite sides of the transversal and not adjacent. <u>Alternate Exterior Angles</u> - exterior angles on opposite sides of the transversal and not adjacent. <u>Corresponding Angles</u> – non-adjacent angles, 1 interior and 1 exterior, on the same side of the transversal.

Example 2

Use the figure to answer.

Identify each pair of angles.

- 1. $\angle 1$ and $\angle 8$ 2. $\angle 8$ and $\angle 12$
- 3. $\angle 8$ and $\angle 10$ 4. $\angle 4$ and $\angle 5$

5. $\angle 1$ and $\angle 5$ 6. $\angle 3$ and $\angle 10$

Worksheet 3.1

Angles and Parallel Lines §3.2

The following postulate and theorems have the same hypothesis, but a different conclusion.

If two <u>parallel lines</u> are cut by a transversal, then: <u>Postulate 3.1</u> – each pair of corresponding angles is congruent. <u>Theorem 3.1</u> – each pair of alternate interior angles is congruent. <u>Theorem 3.2</u> – each pair of consecutive interior angles is supplementary. <u>Theorem 3.3</u> – each pair of alternate exterior angles is congruent.

Example 1 In the figure $x \parallel y$ and $\angle 11 = 51^\circ$, find $\angle 16$

<u>Theorem 3.4</u> – In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Example 2 What is $m \angle 1$?

Example 3 If $m \ge 5 = 2x - 10$, $m \ge 6 = 4(y - 25)$ and $m \ge 7 = x + 15$, find x and y.

