Point - a location
ex. \quad A
write as: A
Line - made up of points and has no thickness or width.

write as: $\quad \stackrel{\rightharpoonup}{\mathrm{AB}}$, line c

Collinear - points on the same line.
Noncollinear - points not on the same line.
Plane - flat surface made up of points; has no depth and extends infinitely in all directions.
ex.

Write as: plane ABC, plane X
Coplanar - points that lie on the same plane.
Noncoplanar - points that do not lie on the same plane.

Example 1

Use the figure to answer.
1a. Name a line containing point K.
b. Name a plane containing point L .
c. Are points J, K, and M collinear?

d. Are points K, L, and M coplanar?

Example 2
Name the geometric shape.

1. The paper you are writing on.
2. The tip of your pencil/pen.
3. The track from the ceiling tile.

Example 3

Draw and label a figure for each.
5. Plane R contains lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$ which intersect at point P. Add point C which is noncollinear to lines $\overleftrightarrow{\mathrm{AB}}$ and $\overleftrightarrow{\mathrm{DE}}$.
6. $\overleftrightarrow{\mathrm{QR}}$ on a coordinate plane contains $\mathrm{Q}(-2,4)$ and $\mathrm{R}(4,-4)$. Add point T so that T is collinear with these points.

Example 4
Use the figure to answer.
7. How many planes appear in the figure?
8. Name 3 collinear points.
9. Are points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D coplanar?

10. Do $\overleftrightarrow{\mathrm{BD}}$ and $\overleftrightarrow{\mathrm{AC}}$ intersect? If so, where?

Worksheet 1.1

Distance between two points

a. Number Line

b. Coordinate Plane

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Example 1

Use the number line to find GH.

Example 2
Find the distance between $\mathrm{E}(-4,1)$ and $\mathrm{F}(3,-1)$.

Midpoint (Segment) - the point on the segment that divides the segment into two congruent segments. If X is the midpoint of $A B$, then $A X \cong B X$.
a. Number Line

b. Coordinate Plane

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 3
Find the coordinates of the midpoint D if $\mathrm{C}(-6,4)$ and $\mathrm{E}(8,1)$.

Example 4

Find the coordinates of W if $\mathrm{X}(3,-5)$ is the midpoint of WY and Y has coordinates of $(12,1)$.

Example 5

What is the measure of PR if Q is the midpoint of PR .

Example 6
What is the measure of AB if B is the midpoint of AC ?

$\underline{\text { Segment Bisector - any segment, line, or plane that intersects a segment at its midpoint. }}$

$B C$ bisects AD

Worksheet 1.3

Degree - a unit of measurement used in measuring angles and arcs. An arc of a circle with a measure of 1° is $\frac{1}{360}$ of the entire circle.

Ray - part of a line that has one endpoint and extends infinitely in one direction.

$\overrightarrow{\mathrm{CD}}, \overrightarrow{\mathrm{CE}}$, or $\overrightarrow{\mathrm{DE}}$
***Two opposite and collinear rays form a line ${ }^{* * *}$
Angle - formed by two noncollinear rays that have a common endpoint.

```
2 parts:
side - rays
vertex - common endpoint
```


$\angle X, \angle Y X Z, \angle Z X Y$, or $\angle 3$

Other distinct parts:

Use the figure to answer.

1. Name all angles that have B as a vertex.
2. Name the sides of $\angle 5$.
3. Write another name for $\angle 6$.

Angle Classifications

1. Right - an angle measuring exactly 90°.
2. Acute - an angle measuring greater than 0° and less than $90^{\circ} .0^{\circ}<x<90^{\circ}$
3. Obtuse - an angle measuring greater than 90° and less than $180^{\circ} .90^{\circ}<x<180^{\circ}$

Use the figure to answer.

Approximate each angle and classify.
4. $\angle \mathrm{TYV}$
5. $\angle \mathrm{WYT}$
6. $\angle \mathrm{TYU}$

$\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$

Solve each angle.
7.

Angle Bisector - a ray that divides an angle into two congruent angles.

Worksheet 1.4

Angle Relationships

§1.5
Adjacent Angles - two angles that lie in the same plane, have a common vertex and a common side, but no common interior points.

$\angle \mathrm{ABD}$ and $\angle \mathrm{CBD}$
Vertical Angles - two nonadjacent angles formed by two intersecting lines.

$\underline{\text { Linear Pair - a pair of adjacent angles with non common sides that are opposite rays. }}$

Example 1
Use the figure to answer.
a. Name adjacent angles.
b. Name vertical angles.
c. Name linear pairs.

Complementary Angles - two angles with measures that have a sum of 90°.

Supplementary Angles - two angles with measures that have a sum of 180°.

Example 2
Find the measure of two complementary angles if the difference of the two angles is 16 .

Example 3
Find the measure of two supplementary angles if the measure of one angle is 6 less than 5 times the measure of the other angle.

Perpendicular - lines, segments, or rays that form right angles.

$$
\overline{\mathrm{AB}} \perp \overline{\mathrm{CD}}
$$

Example 4 Find x if $\overline{\mathrm{KO}} \perp \overline{\mathrm{HM}}$

Example 5
Determine if each statement can be justified from the figure.
a. $\angle \mathrm{VYT}=90^{\circ}$
b. $\angle \mathrm{TYW}$ and $\angle \mathrm{TYU}$ are supplementary.
c. $\angle \mathrm{VYW}$ and $\angle \mathrm{TWS}$ are adjacent angles.

Worksheet 1.5

Algebra Properties
Reflexive Property:
Symmetric Property:

$$
a=a
$$

$$
\text { If } a=b \text {, then } b=a
$$

Transitive Property:

$$
\text { If } a=b \text { and } b=c \text {, then } a=c
$$

Addition/Subtraction:

$$
\text { If } a=b \text {, then } a+c=b+c
$$

Multiplication/Division:

$$
a-c=b-c
$$

If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a} \cdot \mathrm{c}=\mathrm{b} \cdot \mathrm{c}$

$$
\frac{a}{c}=\frac{b}{c}
$$

Substitution Property: If $a=b$, then a may be replaced by b
Distributive Property: $\quad a(b+c)=a b+a c$
A.
B.
C.
D.
E.
F.

Solve $2(5-3 c)-4(a+7)=92$

Statements	Reasons
1. $2(5-3 a)-4(a+7)=92$	1.
2. $10-6 a-4 a-28=92$	2.
3.	3.
4.	4. Addition Property
5.	5. Division Property
6. $\mathbf{a}=-11$	6.

2. Write a 2 column proof to show that if $\frac{7 d+3}{4}=6$, then $\mathrm{d}=3$.

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
$\mathbf{5 .}$	5.
6.	6.
7.	7.
$\mathbf{8 .}$	8.
9.	9.

Segment and Angles are real numbers; therefore properties of real numbers can apply.
3. Given: $\mathrm{AB}=16, \mathrm{AB}=\mathrm{CD}$

Prove: $\mathrm{CD}=16$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Worksheet 2.6

Parallel Lines - coplanar lines that do not intersect.
$\underline{\text { Skew Lines }}$ - lines that do not intersect and are not coplanar.
Example 1
Use the figure to answer.
a. Name a plane parallel to plane AEH.
b. Name all segments parallel to CG.
c. Name all segments that intersect BC.

d. Name all segments that are skew to AE.

Transversal - a line that intersect two or more lines in a plane at different points.

Transversals and Angles

Exterior Angles - angles on the outside of the lines.
Interior Angles - angles on the inside of the lines.
Consecutive Interior Angles - angles on the same side of the transversal and next to each other.
Alternate Interior Angles - interior angles on opposite sides of the transversal and not adjacent.
Alternate Exterior Angles - exterior angles on opposite sides of the transversal and not adjacent.
Corresponding Angles - non-adjacent angles, 1 interior and 1 exterior, on the same side of the transversal.

Example 2
Use the figure to answer.
Identify each pair of angles.

1. $\angle 1$ and $\angle 8$
2. $\angle 8$ and $\angle 10$
3. $\angle 4$ and $\angle 5$
4. $\angle 1$ and $\angle 5$
5. $\angle 3$ and $\angle 10$

The following postulate and theorems have the same hypothesis, but a different conclusion.

If two parallel lines are cut by a transversal, then:
Postulate 3.1 - each pair of corresponding angles is congruent.
Theorem 3.1 - each pair of alternate interior angles is congruent.
Theorem 3.2 - each pair of consecutive interior angles is
supplementary.
Theorem 3.3 - each pair of alternate exterior angles is congruent.

Example 1
In the figure $x \| y$ and $\angle 11=51^{\circ}$, find $\angle 16$

Theorem 3.4 - In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Example 2
What is $m \angle 1$?

Example 3
If $m \angle 5=2 \mathrm{x}-10, m \angle 6=4(y-25)$ and $m \angle 7=x+15$, find x and y.

