Graphing Quadratic Functions §9.1

<u>Quadratic Functions</u> - $f(x) = ax^2 + bx + c$ (also called standard form).

The graph of quadratic functions is called a parabola.

Axis of Symmetry – a central line which makes the parabola symmetric.

<u>Vertex</u> – the intersection of the parabola and the axis of symmetry.

Example 1

Use a table of values to graph $y = 3x^2 + 6x - 4$. State the domain and range.

Example 2

Use a table of values to graph $y = x^2 + 6x + 8$. State the domain and range.

Find the vertex, the equation of the axis of symmetry, *y*-intercept, and determine if there is a minimum or maximum of each.

Find the vertex, the equation of the axis of symmetry, and y-intercept.Example 5Example 6

 $y = -2x^2 - 8x - 2 \qquad \qquad y = 3x^2 + 6x - 2$

Determine if the function has a minimum or maximum value and state it. Find the domain and range of the function. Example 7

 $f(x) = -x^2 - 2x - 2$

Graph, find the vertex, the equation of the axis of symmetry, *y*-intercept, and determine if there is a minimum or maximum of each.

Example 8

$$f(x) = x^2 + 4x + 3$$

Pg 531,23-57 odds

Solve $x^2 - 4x + 2 = 0$ by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

	_
	~
╶╴╴╴╴╴╴╴╴╴╴	

Example 5

Solve $x^2 + 5x - 2 = 0$ by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

Pg 540,1-8,10-18,22-25,30,32

Transformations of Quadratic Functions §9.3

<u>Transformation</u> – changes the position or size of the figure. <u>Translation (type of transformation)</u> – moves the figure up, down, left, or right.

Vertical Transformations

 $f(x) = x^{2} + c$ c(+) : UP c(-): DOWN

Describe how the graph of each function is related to $f(x) = x^2$ <u>Example 1</u> <u>Example 2</u>

 $f(x) = x^2 + 10$ $f(x) = x^2 - 3$

<u>Dilation (type of transformation)</u> – makes the graph narrower (vertical stretch) or wider (vertical shrink) compared to the parent graph.

Describe how the graph of each function is related to $f(x) = x^2$ <u>Example 3</u> <u>1</u> 2 <u>1</u> 2

 $f(x) = \frac{1}{3}x^2 \qquad \qquad f(x) = 3x^2 - 2$

<u>Reflection</u> – flips a figure over a line.

Describe how the graph of each function is related to $f(x) = x^2$ <u>Example 5</u> $f(x) = -2x^2$ <u>Example 6</u> $f(x) = -\frac{1}{4}x^2$

Example 7

What is the equation for the function below?

Solving Quadratic Equations by Completing the Square §9.4

<u>Completing the Square</u> – a method used to make a quadratic expression into a *perfect square trinomial*.

Steps

- 1. Find half of the coefficient of *x*.
- 2. Square the result from step 1.
- 3. Add the result from step 2 to the expression or both sides of equation.

Find the value of c that makes each a perfect square trinomial.

Example 1	Example 2	Example 3
$x^{2} + 16x + c$	$x^2 + 10x + c$	$x^{2} + 9x + c$

Solve each equation by completing the square.

 Example 4
 Example 5

 $x^2 + 6x + 5 = 12$ $x^2 + 8x - 4 = 5$

Example 6	Example 7
$-2x^2 + 36x - 10 = 24$	$3x^2 + 5x - 10 = 0$

 $\frac{\text{Example 8}}{2x^2 - 11x + 5} = -7$

Pg 554,1-7,11-29 odds

Solving Quadratic Equations by Using the Quadratic Formulas §9.5

Quadratic Formula

The solutions of the quadratic equation $ax^2 + bx + c = 0$ can be found by the formula:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $\frac{\text{Example 2}}{x^2 - 12x = -20}$

Use the Quadratic Formula to solve. <u>Example 1</u> $x^2 - 2x = 35$

Example 3	Example 4
$3x^2 + 5x - 12 = 0$	$2x^2 - 17x + 8 = 0$

<u>Discriminant</u> – part of the quadratic formula $(b^2 - 4ac)$ used to determine the number of real solutions of a quadratic equation.

Equation	$x^2 + 2x + 5 = 0$	$x^2 + 10x + 25 = 0$	$2x^2 - 7x + 2 = 0$
Discriminant	b^2 - 4ac	b^2 - 4ac	b^2 - 4ac
Graph			
Real Solutions	0	1	2

State the value of the discriminant and determine the number of real solutions of the graph.

 $\frac{\text{Example 5}}{3x^2 + 10x} = 12$

$$\frac{\text{Example } 6}{4x^2 + 5x + 3} = 0$$

Pg 562,1-35 odds

Exponential Functions §9.6

<u>Exponential Function</u> – a function in the form $y = ab^x$

 $\frac{\text{Graphing Calculator}}{1. \text{ window}}$ x: -9.4 to 9.4 y: -6.2 to 6.2 2. y = 3. Graph $4. 2^{\text{nd}} \text{ Graph for t-chart}$

Graph each on the same coordinate plane. State the domain and range.

Determine whether the set of data shown below displays exponential behavior.

Example 5

İ	x	0	1	2	3	4	5
	у	4	6	8	10	12	14

Example 6

x	0	1	2	3	4	5
У	3	4	7	12	19	28

Example 7

x	0	5	10	15	20	25
У	64	32	16	8	4	2

Pg 570,1-6,8-19,21-24

Growth and Decay §9.7

<u>Exponential Growth</u> – an equation in the form $y = a(1 + r)^{t}$

$$y = a(1 + r)^{t}$$

$$a = \text{initial amount}$$

$$r = \text{rate of change (expressed as decimal, r > 0)}$$

$$t = \text{time}$$

$$y = \text{final amount}$$

Example 1

In 2010, the city of Riverview had a population of 14,075 and a growth rate of 0.85% per year.

a. Write an equation to represent the population of Riverview since 2010.

b. According to the equation, what will be the population of Riverview in 2018?

Exponential Decay – an equation in the form $y = a(1 - r)^{t}$

Example 2

During an economic recession, the Salvation Army found that its donations dropped by 1.2% per year. Before the recession, its donations were \$390,000.

a. Write an equation to represent the charity's donations since the beginning of the recession.

b. Estimate the amount of the donations 5 years later.

<u>Compound Interest</u> – interest earned or paid on both the initial investment and previously earned interest.

$$A = P(1 + \frac{r}{n})^{nt}$$

A = current amount P = Principal (initial amount) r = annual interest rate (decimal, r > 0) n = number of times the interest is compounded each year t = time in years

Example 3

When Tim was born, his grandparents invested \$1000 in a fixed savings account at a rate of 7% compounded annually. Tim will receive the money when he turns 18 to help with college. What amount of money will Tim receive from the investment?

Pg 575,1-11

Analyzing Functions with Successive Differences §9.9

Graph each to determine whether the ordered pair represents a linear, quadratic, or exponential function. Example 1 Example 2

 $(1, 2)(2, 5)(3, 6)(4, 5)(5, 2) \qquad (-1, 6)(0, 2)(1, \frac{2}{3})(2, \frac{2}{9})$

Look for a pattern in each table of values to determine which kind of model best describes the data. Then write an equation for the function that models the data. Example 3 Example 4

1	Exam	<u>ble 3</u>				
	x	-4	-3	-2	-1	0
ſ	у	32	18	8	2	0

x	-2	-1	0	1	2
у	-1	1	3	5	
				(9

Example 5

x	-3	-2	-1	0	1
у	.375	.75	1.5	3	6

Pg 587,1-10,18-23

