Quadratic Functions - $f(x)=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$ (also called standard form).
The graph of quadratic functions is called a parabola.
Axis of Symmetry - a central line which makes the parabola symmetric.
$\underline{\text { Vertex - the intersection of the parabola and the axis of symmetry. }}$


Example 1
Use a table of values to graph $y=3 x^{2}+6 x-4$. State the domain and range.


Example 2
Use a table of values to graph $y=x^{2}+6 x+8$. State the domain and range.


Find the vertex, the equation of the axis of symmetry, $y$-intercept, and determine if there is a minimum or maximum of each.

Example 3


Example 4


Find the vertex, the equation of the axis of symmetry, and $y$-intercept.

## Example 5

$y=-2 x^{2}-8 x-2$

Example 6
$y=3 x^{2}+6 x-2$


Determine if the function has a minimum or maximum value and state it. Find the domain and range of the function. Example 7
$f(x)=-x^{2}-2 x-2$

Graph, find the vertex, the equation of the axis of symmetry, $y$-intercept, and determine if there is a minimum or maximum of each.
Example 8

$$
f(x)=x^{2}+4 x+3
$$



Pg 531,23-57 odds


Solving Quadratic Equations by Graphing
§9.2
Solutions of Quadratic Equations


Example 1
Solve $x^{2}-3 x-10=0$ by graphing


## Example 3

Solve $x^{2}+2 x+3=0$ by graphing


## Example 4

Solve $x^{2}-4 x+2=0$ by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

Example 5


Solve $x^{2}+5 x-2=0$ by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.


Pg 540,1-8,10-18,22-25,30,32


Transformation - changes the position or size of the figure.
Translation (type of transformation) - moves the figure up, down, left, or right.
Vertical Transformations
$f(x)=x^{2}+\mathrm{c} \quad \mathrm{c}(+):$ UP $\quad \mathrm{c}(-):$ DOWN
Describe how the graph of each function is related to $f(x)=x^{2}$

Example 1
$f(x)=x^{2}+10$

$$
f(x)=x^{2}-3
$$

Dilation (type of transformation) - makes the graph narrower (vertical stretch) or wider (vertical shrink) compared to the parent graph.
Describe how the graph of each function is related to $f(x)=x^{2}$

Example 3
Example 4
$f(x)=3 x^{2}-2$

Reflection - flips a figure over a line.
Describe how the graph of each function is related to $f(x)=x^{2}$

Example 5
$f(x)=-2 x^{2}$
Example 6
$f(x)=-\frac{1}{4} x^{2}$

Example 7
What is the equation for the function below?
A. $y=-3 x^{2}-2$
B. $y=3 x^{2}+2$
C. $y=-\frac{1}{3} x^{2}+2$
D. $y=\frac{1}{3} x^{2}-2$


Pg 547,1-23


Completing the Square - a method used to make a quadratic expression into a perfect square trinomial.

Steps

1. Find half of the coefficient of $x$.
2. Square the result from step 1.
3. Add the result from step 2 to the expression or both sides of equation.

Find the value of $c$ that makes each a perfect square trinomial.
Example 1
$x^{2}+16 x+c$

Example 2
$x^{2}+10 x+c$

Example 3
$x^{2}+9 x+c$

Solve each equation by completing the square.

Example 4
$x^{2}+6 x+5=12$

Example 5

$$
x^{2}+8 x-4=5
$$

Example 7
$3 x^{2}+5 x-10=0$

Example 8
$2 x^{2}-11 x+5=-7$

Pg 554,1-7,11-29 odds


Solving Quadratic Equations by Using the
Quadratic Formulas
§9.5

## Quadratic Formula

The solutions of the quadratic equation $a x^{2}+b x+c=0$ can be found by the formula:
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Use the Quadratic Formula to solve.
Example 1
$x^{2}-2 x=35$

## Example 2

$$
x^{2}-12 x=-20
$$

Example 4
$2 x^{2}-17 x+8=0$

Discriminant - part of the quadratic formula $\left(b^{2}-4 a c\right)$ used to determine the number of real solutions of a quadratic equation.

| Equation | $x^{2}+2 x+5=0$ | $x^{2}+10 x+25=0$ | $2 x^{2}-7 x+2=0$ |
| :---: | :---: | :---: | :---: |
| Discriminant | $b^{2}-4 a c$ | $b^{2}-4 a c$ | $b^{2}-4 a c$ |
| Graph | and |  |  |
|  |  |  |  |
| Real Solutions | 0 | 1 | 2 |

State the value of the discriminant and determine the number of real solutions of the graph.

Example 5
$3 x^{2}+10 x=12$

Example 6

$$
4 x^{2}+5 x+3=0
$$

## Pg 562,1-35 odds



Exponential Functions
§9.6
Exponential Function - a function in the form $y=\mathrm{ab}^{x}$
Graphing Calculator

1. window

$$
\begin{aligned}
& \mathrm{x}:-9.4 \text { to } 9.4 \\
& \mathrm{y}:-6.2 \text { to } 6.2
\end{aligned}
$$

2. $y=$
3. Graph
4. $2^{\text {nd }}$ Graph for t -chart

Graph each on the same coordinate plane. State the domain and range.

Example 1
$y=3^{x}$

Example 3
$y=5^{x}$


Example 2

$$
y=\left(\frac{1}{4}\right)^{x}
$$

Example 4

$$
y=\left(\frac{1}{2}\right)^{x}
$$

Determine whether the set of data shown below displays exponential behavior.
Example 5

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 4 | 6 | 8 | 10 | 12 | 14 |

Example 6

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 3 | 4 | 7 | 12 | 19 | 28 |

## Example 7

| $x$ | 0 | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 64 | 32 | 16 | 8 | 4 | 2 |



Exponential Growth - an equation in the form $y=a(1+r)^{t}$

$$
\begin{gathered}
y=a(1+r)^{t} \\
a=\text { initial amount } \\
r=\text { rate of change (expressed as decimal, } \mathrm{r}>0) \\
t=\text { time } \\
y=\text { final amount }
\end{gathered}
$$

Example 1
In 2010, the city of Riverview had a population of 14,075 and a growth rate of $0.85 \%$ per year.
a. Write an equation to represent the population of Riverview since 2010.
b. According to the equation, what will be the population of Riverview in 2018 ?

Exponential Decay - an equation in the form $y=a(1-r)^{t}$
Example 2
During an economic recession, the Salvation Army found that its donations dropped by $1.2 \%$ per year. Before the recession, its donations were $\$ 390,000$.
a. Write an equation to represent the charity's donations since the beginning of the recession.
b. Estimate the amount of the donations 5 years later.

Compound Interest - interest earned or paid on both the initial investment and previously earned interest.

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A=\text { current amount } \\
P=\text { Principal (initial amount }) \\
r=\text { annual interest rate }(\text { decimal, } \mathrm{r}>0) \\
n=\text { number of times the interest is compounded each year } \\
t=\text { time in years }
\end{gathered}
$$

## Example 3

When Tim was born, his grandparents invested $\$ 1000$ in a fixed savings account at a rate of $7 \%$ compounded annually. Tim will receive the money when he turns 18 to help with college. What amount of money will Tim receive from the investment?


Linear Function

$y=m x$

Quadratic Function

$y=a x^{2}$

Exponential Function

$y=\mathrm{ab}^{x}$

Graph each to determine whether the ordered pair represents a linear, quadratic, or exponential function.

Example 1
$(1,2)(2,5)(3,6)(4,5)(5,2)$

## Example 2

$$
(-1,6)(0,2)\left(1, \frac{2}{3}\right)\left(2, \frac{2}{9}\right)
$$

Look for a pattern in each table of values to determine which kind of model best describes the data. Then write an equation for the function that models the data.

Example 3

| $x$ | -4 | -3 | -2 | -1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 32 | 18 | 8 | 2 | 0 |

## Example 4



Example 5

| $x$ | -3 | -2 | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | .375 | .75 | 1.5 | 3 | 6 |

Pg 587,1-10,18-23


