# Monomials and Factoring §8.1

<u>Factored Form</u> – a monomial expressed as the product of prime numbers and variables (exponent  $\leq 1$ ).

Example 1Example 2 $18x^2y^3$  $24x^3y^5$ 

Greatest Common Factor (GCF) – the greatest number that is a factor of all original monomials.

Example 3 Find the GCF of  $18x^2y^5$  and  $27x^3y^4$ .

Example 4 Find the GCF of  $15xy^4$ ,  $25x^3y^2$  and  $30x^2y^3$ .

Pg 472, 1-22, 39,40,45,46



## Using the Distributive Property §8.2

 $\underline{Factoring}$  – to express a polynomial as the product of monomials and polynomials.

\*\*\*opposite of distributive property\*\*\*

Use the distributive property (GCF) to factor each polynomial. <u>Example 1</u> <u>Example 2</u>  $15x + 25x^2$   $12xy + 24xy^2 - 30x^2y^4$ 

Factoring by Grouping – using the distributive property to factor polynomials with 4 or more terms.

| Example 3              | Example 4           |
|------------------------|---------------------|
| $3x^2 + 12x + 4x + 16$ | 15x - 3xy + 4y - 20 |

 $\frac{\text{Example 5}}{12xy - 24x - 8y + 16}$ 

Zero Product Property – used to *solve* quadratic equations.

| Solve each equation and check your solutions. |             |
|-----------------------------------------------|-------------|
| Example 6                                     | Example 7   |
| (x+3)(x-5) = 0                                | 2x + 12 = 0 |

# Example 8

$$x^2 = 7x$$

Pg 480,15-43,61,71 odds



## Quadratic Equations §8.3

Example 10  $x^2 - 2x - 24$ 

Factoring Steps

1. Determine the signs by looking at *second* sign in polynomial.

- a. +: signs are the same (take sum)
- b. -: signs are different (take difference)

2. Determine the factor whose sum or difference equals the coefficient of the middle term.

| Determine if the signs are the same or different. |                 |
|---------------------------------------------------|-----------------|
| Example 1                                         | Example 2       |
| $x^2 - 7x + 10$                                   | $x^2 + 5x - 12$ |

| Example 3       | Example 4       |
|-----------------|-----------------|
| $x^2 - 6x - 13$ | $x^2 + 8x + 20$ |

Answer each. Example 5 Find two factors of 20 that: a. add up to 9

b. differ by 8

Example 6 Find two factors of 24 that: a. add up to 14

b. differ by 5

| Factor          |                 |
|-----------------|-----------------|
| Example 7       | Example 8       |
| $x^2 - 8x + 12$ | $x^2 + 7x - 18$ |

| Example 9        |  |  |
|------------------|--|--|
| $x^2 + 11x + 28$ |  |  |

| Example 11       |  |
|------------------|--|
| $16 - 10x + x^2$ |  |

| Example 12     |
|----------------|
| $x^2 + x - 20$ |

Solve each equation. Check your solutions. <u>Example 13</u>  $x^{2} + 8x + 15 = 0$ 

 $\frac{\text{Example 14}}{x^2 + 4x = 12}$ 

Pg 489, 1-9,13-29,55-59 odds



# Quadratic Equations §8.4

Same as 8.3, however the leading coefficient  $\neq 1$ .

Remember to look for GCF first.

-

| Factor.           |                   |
|-------------------|-------------------|
| Example 1         | Example 2         |
| $5x^2 + 27x + 10$ | $4x^2 + 24x + 32$ |

| Example 3        | Example 4         |
|------------------|-------------------|
| $7x^2 + 29x + 4$ | $3x^2 - 17x + 20$ |

<u>Prime Polynomial</u> – a polynomial that cannot be written as a product of two polynomials (not factorable).

| Factor if possible. |                 |
|---------------------|-----------------|
| Example 5           | Example 6       |
| $3x^2 - 14x - 15$   | $2x^2 + 3x - 5$ |

Solve. <u>Example 7</u>  $5x^2 - 18x - 8 = 0$ 

Pg 496, 1-27, 49-57 odds



## Quadratic Equations: Differences of Squares §8.5

 $\underline{\text{Difference of Two Squares}}$  – two perfect squares separated by a "-" sign.

Perfect Squares

| Factor if possible.        |                            |
|----------------------------|----------------------------|
| Example 1                  | Example 2                  |
| <i>x</i> <sup>2</sup> - 64 | <i>x</i> <sup>2</sup> - 25 |

| Example 3    | Example 4                  |
|--------------|----------------------------|
| $4x^2 - 121$ | <i>x</i> <sup>4</sup> - 16 |

| Example 5    | Example 6                  |
|--------------|----------------------------|
| $2x^5 - 72x$ | $6x^3 + 30x^2 - 24x - 120$ |

Example 7 In the equation,  $y = q^2 - \frac{4}{25}$ , what is the value of q when y = 0?

Pg 501, 1-11,15-39,49,69,71 odds



## Quadratic Equations: Perfect Square Trinomials §8.6

<u>Perfect Square Trinomial</u> – a trinomial that is a square of a binomial.

$$a^2 + 2ab + b^2$$

Steps for PST

1. Check if first term is a perfect square. Of What?

2. Check if last term is a perfect square. Of What?

3. Check if second term is two times the square of first and last.

First term x Last term x 2 = Second term?????

| Factor if possible |                   |
|--------------------|-------------------|
| Example 1          | Example 2         |
| $25x^2 - 30x + 9$  | $9x^2 + 24x + 16$ |

| Example 3   | Example 4         |
|-------------|-------------------|
| $6x^2 - 96$ | $16x^2 + 8x - 15$ |

 $\frac{\text{Example 5}}{9x^2 + 24x + 25}$ 

Solve. <u>Example 6</u>  $4x^2 + 36x = -81$ 

Solve. <u>Example 7</u>  $(x - 7)^2 = 36$ 

 $\frac{\text{Example 8}}{(x+9)^2} = 25$ 

#### Pg 509,1-9,13-35,65,69 odds

