Multiplying Monomials §7.1

<u>Monomial (1 Term)</u> – a number, a variable, or the product of a number and one or more variables with non-negative integer exponents.

ex. -3, 7*x*, $5xy^2$

<u>Constant</u> – a monomial that is a real number.

ex. 8, -23

Determine whether each expression is a monomial.			
Example1	Example 2	Example 3	Example 4
15 - c	$8f^2g$	$\frac{3}{4}$	$\frac{5}{t}$

<u>Product of Powers</u> - $a^m \cdot a^p = a^{m+p}$

Example 5	Example 6
$(2r^4)(-10r^5)$	$(6c^2d^5)(3cd^7)$

<u>Power of a Powers</u> - $(a^m)^p = a^{mp}$

Example 7	Ex
$(b^3)^5$	

Example	8
$((3^4)^2)^3$	

Power of a Product - (a	$b)^m = a^m b^m$
-------------------------	------------------

Example 9	Example 10
$(-3x^2y^5z^3)^3$	$\left(4x^7y^4z\right)^2$

Example 11

Express the volume of a cube with side length $5xy^2z^3$ as a monomial.

 $\frac{\text{Example 12}}{\text{Simplify}\left[\left(4a^2b^3c^4\right)^2\right]\left(2ac^3\right)^3}$

Pg 404, 21-59,73 odds

Dividing Monomials §7.2

 $\frac{x^{n}}{x^{2}} =$ <u>Quotient of Powers</u> - $\frac{a^{m}}{a^{n}} = a^{m \cdot n}$

 $\frac{\text{Example 1}}{\frac{x^7 y^{12}}{x^6 y^3}}$

$$\frac{\text{Example 2}}{\frac{a^8b^4c^5}{a^3b^4c^2}}$$

Power of a Quotient -
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Example 5

Exam	<u>ple 6</u>
$m^0 n^5$	
n^2	

Negative Exponents -
$$a^{-n} = \frac{1}{a^n}$$

Switch Location

$\frac{\text{Example 7}}{\frac{x^{-4}y^9}{z^{-6}}}$

Example 8		
$75p^{3}m^{-5}$		
$\overline{15p^5m^{-4}r^{-8}}$		

Pg 413, 19-41, 45-49, 75, 77 odds

Scientific Notations §7.3

<u>Scientific Notation</u> – a number written in the form $a \ge 10^n$. $1 \le a < 10^n$

Express each in scientific notation. Example 1 4,062,000,000

Example 2 .0000813

Express each in standard form.	
Example 3	
1.8 x 10 ⁻⁴	

 $\frac{\text{Example 4}}{6.49 \text{ x } 10^7}$

Evaluate
Example 5
$(5 \times 10^{-6})(2.3 \times 10^{12})$

Example 6
4.5 x 10 ⁸
$1.5 \ge 10^{10}$

Pg 419,20-39,80-82

Polynomials §7.4

****terms are separated by + or - sign****

Monomial – one term

Binomial - two terms

<u>Trinomial</u> – three terms

<u>Polynomial</u> – monomial or sum of monomials.

Determine whether each expression is a polynomial and if so, identify.

Example 1	Example 2	Example 3
-8	$x^3 + 7x^{-2} + 5$	$6x^5 - 3x^2 + 16x$

Find the degree of each polynomial	
Example 4	Example 5
$x^4 - 3x^3 + 12x^2$	$6a^2b^3 + 15ab^4 - 4$

Write each polynomial in standard form. Identify the leading coefficient.Example 6Example 7 $9x^2 + 3x^6 - 4x$ $12 + 5y + 6xy + 8xy^2 + 8x$

Example 8

From 2000 to 2006, the number N (in thousands0 of patients seen by a medical facility can be modeled by the equation $N = t^2 + 2.1t + 0.8$, where *t* is the number of years since 2000. How many patients were seen in 2005?

Pg 427,20-40,48,70-72

Adding and Subtracting Polynomials §7.5

Find each sumExample 1 $(7y^2 + 2y - 3) + (2 - 4y + 5y^2)$ Example 2 $(4x^2 - 2x + 7) + (3x - 7x^2 - 9)$

Find each differenceExample 3 $(6y^2 + 8y^4 - 5y) - (9y^4 - 7y + 2y^2)$ $(6x^2 + 11x^3 + 2x) - (4x - 3 + 5x^2)$

Example 5

The total amount of toy sales T (in billions of dollars) consist of two groups: sales of video games V and sales of traditional toys R. In Recent years, the sales of traditional toys and total sales represented by the following equations, where n is the number of years since 2000.

Think: T(total) = V(video) + R(toys) is this correct?

 $R = 0.46n^3 - 1.9n^2 + 3n + 19$ $T = 0.45n^3 - 1.85n^2 + 4.4n + 22.6$

a. Write an equation that represents the sales of video games.

b. Use this equation to predict the video games sales in 2009.

Pg 436,10-21,23-27,46,52

Multiplying a Polynomial by a Monomial §7.6

Find each product. <u>Example 1</u> $2x^3(x^2 + 3x - 7)$

$$\frac{\text{Example 2}}{-3d^4(2d^3 - 4d^2 + 5d - 5)}$$

Simplify. Example 3 $3g(4g^2 + 3g) - 6(-3g^2 - 3)$

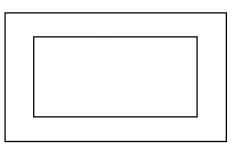
Example 4 $3(2t^2 - 4t - 15) + 6t(t + 2)$

Example 5 Find the area of the triangle below.

b-6 $\dot{2}b+4$

Pg 442,18-32 skip 30

Multiplying Polynomials §7.7


FOIL – a method for multiplying two binomials.

F – first	O – outter	I – inner	L – last
Find each pr <u>Example 1</u> (y-8)(y+5)		$\frac{\text{Example}}{(2x+3)}$	

Example 3	Example 4
(5a+2)(3a-1)	(3b+4)(3b-4)

Example 5

A contractor is building a deck around a rectangular swimming pool which measures 20' long and 15' wide. The deck is x feet from every side of the pool. Write an expression for the total area of the pool and deck.

Example 6 $(3b+4)(a^2 - 12a + 1)$

Pg 450,1-31 odd

Sum of a Square - $(a + b)^2 = (a + b)(a + b)$

Example 1	Example 2
$(x+5)^2$	$(2y+3)^2$

<u>Difference of a Square</u> - $(a - b)^2 = (a - b)(a - b)$

Example 3Example 4 $(x - 6)^2$ $(3y - 5)^2$

<u>Product of Sum and Difference</u> - $(a + b)(a - b) = a^2 - b^2$

 $\frac{\text{Example 1}}{(x - 8)(x + 8)}$

 $\frac{\text{Example 2}}{(2y+7)(2y-7)}$

Pg 456,12-20,22-32,45,66,72

