Multiplying Monomials

Monomial (1 Term) - a number, a variable, or the product of a number and one or more variables with non-negative integer exponents.

$$
\text { ex. }-3,7 x, 5 x y^{2}
$$

Constant - a monomial that is a real number.
ex. $8,-23$

Determine whether each expression is a monomial.

| Example1 | Example 2 | $\frac{\text { Example 3 }}{\frac{3}{4}} \quad \frac{\text { Example 4 }}{\frac{5}{t}}$ |
| :---: | :--- | :---: | :---: |

Product of Powers $-a^{m} \cdot a^{p}=a^{m+p}$

Example 5
$\left(2 r^{4}\right)\left(-10 r^{5}\right)$

Example 6
$\left(6 c^{2} d^{5}\right)\left(3 c d^{7}\right)$

Power of a Powers $-\left(a^{m}\right)^{p}=a^{m p}$

Example 7
$\left(b^{3}\right)^{5}$

Example 8

$\left(\left(3^{4}\right)^{2}\right)^{3}$

Power of a Product - $(a b)^{m}=a^{m} b^{m}$
Example 9
$\left(-3 x^{2} y^{5} z^{3}\right)^{3}$
Example 10
$\left(4 x^{7} y^{4} z\right)^{2}$

Example 11

Express the volume of a cube with side length $5 x y^{2} z^{3}$ as a monomial.

Example 12
Simplify $\left[\left(4 a^{2} b^{3} c^{4}\right)^{2}\right]\left(2 a c^{3}\right)^{3}$

Dividing Monomials

$$
\begin{aligned}
& \frac{x^{5}}{x^{2}}= \\
& \underline{\text { Quotient of Powers }}-\frac{a^{m}}{a^{n}}=a^{m-n}
\end{aligned}
$$

Example 1
$\frac{x^{7} y^{12}}{x^{6} y^{3}}$
Power of a Quotient $-\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
Example 3
$\left(\frac{3 c^{7} d^{2}}{5}\right)^{3}$
$\frac{x^{5}}{x^{5}}=$

Example 5
$(-2 x)^{0}$
$\frac{x^{3}}{x^{7}}=$

Example 2

$$
\frac{a^{8} b^{4} c^{5}}{a^{3} b^{4} c^{2}}
$$

Example 4

$$
\left(\frac{2 x^{5}}{5 y^{3}}\right)^{3}
$$

Example 6
$\frac{m^{0} n^{5}}{n^{2}}$

Negative Exponents $-a^{-n}=\frac{1}{a^{n}}$

Switch Location

Example 7
$\frac{x^{-4} y^{9}}{z^{-6}}$

Example 8
$\frac{75 p^{3} m^{-5}}{15 p^{5} m^{-4} r^{-8}}$

Pg 413, 19-41, 45-49, 75, 77 odds

$\underline{\text { Scientific Notation - a number written in the form } a \times 10^{\mathrm{n}} .1 \leq a<10}$

Express each in scientific notation.
Example 1
4,062,000,000
Example 2
. 0000813

Express each in standard form.
Example 3
Example 4
1.8×10^{-4}
6.49×10^{7}

Evaluate
Example 5
$\left(5 \times 10^{-6}\right)\left(2.3 \times 10^{12}\right)$
Example 6
$\frac{4.5 \times 10^{8}}{1.5 \times 10^{10}}$

Monomial - one term
Binomial - two terms
Trinomial - three terms
Polynomial - monomial or sum of monomials.
Determine whether each expression is a polynomial and if so, identify.
Example 1
-8
Example 2
$x^{3}+7 x^{-2}+5$
Example 3
$6 x^{5}-3 x^{2}+16 x$

Find the degree of each polynomial

Example 4
$x^{4}-3 x^{3}+12 x^{2}$

Example 5
$6 a^{2} b^{3}+15 a b^{4}-4$

Write each polynomial in standard form. Identify the leading coefficient.

Example 6
$9 x^{2}+3 x^{6}-4 x$

Example 7
$12+5 y+6 x y+8 x y^{2}+8 x$

Example 8

From 2000 to 2006, the number N (in thousands0 of patients seen by a medical facility can be modeled by the equation $N=t^{2}+2.1 t+0.8$, where t is the number of years since 2000. How many patients were seen in 2005?

Pg 427,20-40,48,70-72

Adding and Subtracting Polynomials

$$
\S 7.5
$$

Find each sum
Example 1
$\left(7 y^{2}+2 y-3\right)+\left(2-4 y+5 y^{2}\right)$
Example 2
$\left(4 x^{2}-2 x+7\right)+\left(3 x-7 x^{2}-9\right)$

Find each difference
Example 3

$$
\left(6 y^{2}+8 y^{4}-5 y\right)-\left(9 y^{4}-7 y+2 y^{2}\right)
$$

Example 4

$\left(6 x^{2}+11 x^{3}+2 x\right)-\left(4 x-3+5 x^{2}\right)$

Example 5

The total amount of toy sales \boldsymbol{T} (in billions of dollars) consist of two groups: sales of video games \boldsymbol{V} and sales of traditional toys \boldsymbol{R}. In Recent years, the sales of traditional toys and total sales represented by the following equations, where \boldsymbol{n} is the number of years since 2000 .

Think: $T($ total $)=V($ video $)+R($ toys $)$ is this correct?

$$
\begin{aligned}
& R=0.46 n^{3}-1.9 n^{2}+3 n+19 \\
& T=0.45 n^{3}-1.85 n^{2}+4.4 n+22.6
\end{aligned}
$$

a. Write an equation that represents the sales of video games.
b. Use this equation to predict the video games sales in 2009.

> Pg 436,10-21,23-27,46,52

Multiplying a Polynomial by a Monomial

Find each product.
Example 1
$2 x^{3}\left(x^{2}+3 x-7\right)$

Example 2

$$
-3 d^{4}\left(2 d^{3}-4 d^{2}+5 d-5\right)
$$

Simplify.
Example 3
$3 g\left(4 g^{2}+3 g\right)-6\left(-3 g^{2}-3\right)$

Example 4

$3\left(2 t^{2}-4 t-15\right)+6 t(t+2)$

Example 5

Find the area of the triangle below.

Multiplying Polynomials

§7.7
FOIL - a method for multiplying two binomials.
F - first
O - outter
I - inner
L- last

Find each product.

Example 1
$\overline{(y-8)(y+5)}$

Example 2
$(2 x+3)(x-4)$

Example 4 $(3 b+4)(3 b-4)$

Example 3
$(5 a+2)(3 a-1)$

Example 5

A contractor is building a deck around a rectangular swimming pool which measures 20^{\prime} long and 15 ' wide. The deck is x feet from every side of the pool. Write an expression for the total area of the pool and deck.

Example 6
$(3 b+4)\left(a^{2}-12 a+1\right)$

Special Products

§7.8
Sum of a Square $-(a+b)^{2}=(a+b)(a+b)$

Example 1
Example 2
$(x+5)^{2}$
$(2 y+3)^{2}$

Difference of a Square - $(a-b)^{2}=(a-b)(a-b)$

Example 3
$(x-6)^{2}$

Example 4

$$
(3 y-5)^{2}
$$

Product of Sum and Difference $-(a+b)(a-b)=a^{2}-b^{2}$

Example 1
$(x-8)(x+8)$

Example 2
$(2 y+7)(2 y-7)$

Pg 456,12-20,22-32,45,66,72

