Discrete random variable - when the observations of a quantitative random number can take on only a finite number of values or a countable number of values, we say it is a discrete random variable.

Examples

Number of eggs in a nest
Number of eggs produced by a hen
Number of students taking Probability
Continuous random variable - when the observation of a quantitative random number can take on any of the countless number of values in a line interval, we say it is a continuous random variable.

Determine if each is a discrete or continuous random variable.

Example 1
The time it takes for a student to finish test.
Example 2
The number of bad checks at a store

Example 3

The number of those running for president

Example 4

The amount of gas needed to drive 200 miles

Probability distribution - an assignment of probability to the specific values of the random variable or to a range of values of the random variable (whether discrete or continuous).

1. The probability distribution of a discrete random variable has a probability assigned to each value of the random variable.
2. The sum of these probabilities most be 1 .

Example 5
Boredom Tolerance Test
20,000 Subjects

Score	\# of Subjects	Relative Frequency
0	1400	.07
1	2600	.13
2	3600	.18
3	6000	.30
4	4400	.22
5	1600	.08
6	400	.02

(

Pg 228,1-4,5ab,6a-c,7a-c,8a-c
§5.1 (Day 2)

Mean and Standard Deviation of a discrete probability distribution.

$$
\begin{aligned}
& \operatorname{Mean}(\mu)=\sum x \mathrm{P}(x) \\
& \operatorname{Stan} \text { dard Deviation }(\sigma)=\sqrt{\sum(x-\mu)^{2} \mathrm{P}(x)}
\end{aligned}
$$

$$
x=\text { value of a random variable }
$$

$$
\mathrm{P}(x)=\text { probability of that number }
$$

$$
\sum=\text { sum }
$$

The mean of a probability distribution is often called the expected value because it represents a central point for the entire distribution.

Example - number of times viewers see an infomercial before buying the product.

x (viewing)	$\mathrm{P}(x)$	$x \mathrm{P}(x)$	$x-\mu$	$(x-\mu)^{2}$	$(x-\mu)^{2} \mathrm{P}(\mathrm{x})$
1	.27				
2	.31				
3	.18				
4	.09				
5	.15				

Pg 229,5c-e,6de,7de,8de

Binomial Experiment

1. There are a fixed number of trials (n).
2. The n trials are independent and repeated under identical conditions.
3. Each trial only has 2 outcomes: $\operatorname{success}(p)$ and failures (q).
4. For each individual trial, the probability of success is the same. The probability of success is denoted by p and failure q :

$$
p+q=1 \quad q=1-p \quad p=1-q
$$

5. The central problem of a binomial experiment is to find the probability of r successes out of n trials.

Example 1

1 spin on the "Wheel of Fortune." There is one gold slow out of 36 worth $\$ 100,000.100$ contestants get one spin. Sponsors want to know the probability that 3 people will win.

Example 2

3 multiple choice questions each with 4 possible answers. Find the probabilities of each possible outcome if you randomly guess.

$$
\begin{gathered}
\text { OR } \\
\mathrm{P}(r)=\mathrm{C}_{\mathrm{n}, \mathrm{r}} p^{r} q^{(n-r)} \\
\mathrm{P}(r)=\frac{\mathrm{n}!}{\mathrm{n}!(\mathrm{n}-\mathrm{r})!} p^{r} q^{(n-r)}
\end{gathered}
$$

Formula for Binomial Probability Distribution
$P(r)=\frac{n!}{r!(n-r)!}$

Example 1
20% of houses have Playstation. Find the probability that if we sample 12 houses, exactly 5 will have Playstation.

Example 1b
20% of houses have Playstation. Find the probability that if we sample 12 houses, exactly 5, 6, or 7 will have Playstation.

Look at chart

Mean and Standard Deviation of Binomial Distribution

§5.3
Example 1
The probability that a person dining alone will leave a tip is 0.7 . A waiter serves 6 lone diners during a lunch hour. Make a graph of the binomial probability distribution which shows the probability that $0,1,2,3,4,5$, or all 6 diners leave a tip.

Histogram

The balance point of the distribution is the mean (μ) or expected value.
The measure of spread of the distribution is the standard deviation (σ).

$$
\begin{aligned}
\mu & =\mathrm{np} \\
\sigma & =\sqrt{\mathrm{npq}}
\end{aligned}
$$

Example

Go back to waiter problem

