Chapter 4 Review 2

Use the composition of functions to determine whether the given functions are inverse functions.

1. $F(x)=\sqrt{x} \quad G(x)=x^{2}$
2. $p(x)=\frac{x+3}{x}$
$q(x)=\frac{3}{x-1}$

Find the inverse of each function.
3. $f(x)=-2 x+3$
4. $f(x)=\frac{x}{x+4}$
5. $\{(3,-1),(-5,-17),(0,-7),(4,1),(7,7)\}$
6. $f(x)=\sqrt{5 x-4}$

Solve each equation.

7. $\log _{3} 81=x$
8. $\ln e^{\pi}=x$
9. $5^{x-4}=625$
10. $32\left(2^{x}\right)=1024$
11. $10^{\log 2 x}=14$

Write each equation in its exponential form.
12. $3=\log _{3} 27$
13. $-1=\log \frac{1}{10}$
14. $\ln x=7$
15. $\log _{4}(x+2)=5$

Write each equation in its logarithmic form. Assume $y>0$ and $b>0$.
16. $2^{6}=64$
17. $4^{1 / 2}=2$
18. $90.02=e^{4.5}$
19. $e^{\sqrt{2}}=(x-10)$

Graph each function.

20. $f(x)=\left(\frac{1}{3}\right)^{x}$
21. $f(x)=2^{x}$

22. $f(x)=\log _{7} x$

23. $f(x) \log _{1 / 6} x$

Expand the logarithmic expressions.
24. $\log \left(x^{3} y \sqrt{z}\right)$
25. $\ln \left(\frac{\sqrt{x y^{3}}}{e z^{2}}\right)$
26. $\log _{2}\left(\frac{8 x}{\sqrt[3]{y^{2}}}\right)$

Write each logarithmic expression as a single logarithm with a coefficient of 1.
27. $5 \log x-2 \log (x+5)$
28. $\ln x-(\ln y-\ln z)$
29. $\frac{1}{2} \log _{2}(x y)+3 \log _{2} z-\log _{2} a$

Use the change-of-base formula and a calculator to approximate each logarithm accurate to six significant digits.
30. $\log _{5} 8$
31. $\log _{9} 121$
32. $\log _{6} 5.91$
33. $\log _{8} \pi$

Solve the equation for \boldsymbol{x}.

34. $7^{x}=54$
35. $\log 75 x+\log (x+1)=2$
36. $\ln x+\ln (x+5)=\ln 403.428$
37. $4^{3 x+11}=89$
38. Use $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$to find the hydronium-ion concentration of lemon juice that has a pH of 2.3.
39. Find the balance when $\$ 3750$ is invested at an annual interest rate of 2.5% for 5 years is compounded
a. Monthly
b. Daily
c. Continuously
40. Use the exponential growth function $N(t)=N_{0} e^{k t}$ to answer the both \mathbf{a} and \mathbf{b}.
a. Find the exponential growth function for a city whose population was 25,500 in 2007 and 26,800 in 2008. Use $t=0$ to represent 2007.
b. Use the growth function to predict, to the nearest hundred, the population of the city in 2014.
