Probability - the likelihood that a certain event will occur.
$\mathrm{P}(\mathrm{A})$: "P of A " or "Probability of A "
$0 \leq \mathrm{P} \leq 1$ or $0 \% \leq \mathrm{P} \leq 100 \%$

Ways to Compute Probability

1. Intuition

Ex. ESPN reports that the Detroit Red Wings have a 70\% chance of winning the Stanley Cup.
2. Relative Frequency: $\mathrm{P}(\mathrm{event})=\frac{f}{n}=\frac{\text { frequency of an event }}{\text { sample size }}$

Ex. The right to health lobby found that out of 100 lab reports, 40 contained errors.
3. Probability Formula: $\mathrm{P}($ event $)=\frac{\# \text { of favorable outcomes }}{\text { total } \# \text { of outcomes }}$

Ex. $\mathrm{P}($ heads $)=\frac{1}{2} ; \mathrm{P}($ rolling a 4$)=\frac{1}{6}$

Law of Large Numbers - as a sample size increases and increases, the relative frequencies of outcomes get closer and closer to the theoretical (or actual) probability.

Sample Space - the set of all possible outcomes of an experiment.
Coin Flip $=\{$ heads, tails $\}$
Die Roll $=\{1,2,3,4,5,6\}$

Complement of an event $-1-\mathrm{P}(\mathrm{A})$

If $\mathrm{P}($ blue $)=\frac{2}{7}$, then $\mathrm{P}($ not blue $)=\frac{5}{7}$
$\mathrm{P}\left(5\right.$ on $1^{\text {st }}$ die, 3 on $2^{\text {nd }}$ die $)$

P (ace on $1^{\text {st }}$ card, ace on $2^{\text {nd }}$ card $)$

With Replacement: Independent
Without Replacement: Dependent
Independent/Dependent Events
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A}, \mathrm{B}$, and C$)=\mathrm{P}(\mathrm{A}) \bullet \mathrm{P}(\mathrm{B}) \bullet \mathrm{P}(\mathrm{C})$

Example 1

Find each using 2 die.
a. $\mathrm{P}(5,2)$
b. $\mathrm{P}(3,3)$

Example 2

Find each using one coin.
a. $\mathrm{P}(\mathrm{H}, \mathrm{T})$
b. $\mathrm{P}(\mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T})$

Example 3

Find each using a deck of cards without replacement.
a. P(A, K)
b. $\mathrm{P}(8,8)$

Example 4

If a bag of marbles contains 8 red, 6 blue, 5 green, and 1 yellow, find each without replacement.
a. $\mathrm{P}(\mathrm{b}, \mathrm{y})$
b. $\mathrm{P}(\mathrm{r}, \mathrm{g})$
c. $\mathrm{P}(\mathrm{g}, \mathrm{r})$
d. $\mathrm{P}($ not $\mathrm{r}, \mathrm{y})$

Pg 192, 1c, 2c, 3c, 4acd, 5abc-7abc, 10abc-12abc

$\mathrm{P}(\mathrm{A}$ or B$)$

$\mathrm{P}($ king or dia $)=$
Mutually exclusive events - events that can not occur at the same time.

Example 1

Determine which are mutually exclusive.
a. drawing a 4 , drawing a 6
b. drawing a 4 , drawing a club
c. rolling a 5 , rolling a 2
d. taking math, taking English.

Mutually Exclusive events A and B

$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

Not Mutually Exclusive events A and B

$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

Example 2

Find the following.
a. P(J or A)
b. $\mathrm{P}(10$ or c$)$
c. $\mathrm{P}(9$ or 10 or J or Q$)$
d. P (sum of die, 8 or 9 or 10)

A survey was done on employee's political affiliation at a company with the following results:

Type Employee	Democrat (D)	Republican(R)	Ind (I)	TOTAL
Executive	5	34	9	$\mathbf{4 8}$
Prod. Worker (PW)	63	21	8	$\mathbf{9 2}$
TOTAL	$\mathbf{6 8}$	$\mathbf{5 5}$	$\mathbf{1 7}$	$\mathbf{1 4 0}$

Example 1

Find each.
a. $\mathrm{P}(\mathrm{D})$
b. $\mathrm{P}(\mathrm{E})$
c. $P(D$, given $E)$
d. $P(R$, given $P W)$ e. $P(D$ and $E) \quad$ f. $P(D$ or $E)$

What if a sample space is not easy to figure out?

Example 1

A college student needs to take Calculus, History, and English their freshman year. There are 4 sections of Calculus, 2 sections of History, and 3 sections of English. How many different schedules are possible?

Is there an easier way for the 24 ?

Multiplication Rule of Counting - if there are n possible outcomes for event E_{1} and m possible outcomes for event E_{2}, then the total of $n \times m$ or $n m$ possible outcomes for the series of events E_{1} followed by E_{2}.

Example 2

A dinner menu gives you a choice of 2 appetizers, 3 salads, 5 main dishes, and 4 desserts. How many possible combinations are there?

How many ways exist for 8 people to be seated at a dinner table?

When multiplying in descending order, it is called factorial.

$$
\begin{aligned}
& !=\text { factorial } \\
& 8!=40,320
\end{aligned}
$$

Example 1

Find each.
a. 5!
b. 3!

Counting Rule for Permutations - the number of ways to arrange in order n distinct objects, taking r at a time is:

$$
P_{n, r}=\frac{n!}{(n-r)!}
$$

Order is important

Example 2

Find each.
a. $P_{7,3}$
b. $P_{10,6}$

Example 3

If we have 8 people to sit with only 5 chairs and these 5 are to be in a particular order, how many combinations exist?

Counting Rule for Combinations - the number of combinations of n objects taken r at a time is:

$$
C_{n, r}=\frac{n!}{r!(n-r)!}
$$

Order not important

Example 4

Find each.
a. $C_{6,2}$
b. $C_{8,5}$

Example 5

Out of 12 people, 3 will go to the convention

Pg 209, 5, 6, 9-19, 20a

