Solving Systems of Equations by Graphing

$$
\S 3.1
$$

Systems of Equations - a set of equations with the same variables.
Consistent System - a system that has at least one solution.
Inconsistent System - a system that does not have a solution.
Independent System - a system that has exactly one solution.
Dependent System - a system that has infinite amount of solutions.

Example 1

Graph each system of equations and state its solution. Also, state whether the system is consistent or inconsistent and dependent or independent.
$x+y=5$
$3 x-2 y=20$

Example 2

Graph each system of equations and state its solution. Also, state whether the system is consistent or inconsistent and dependent or independent.
$y=-3 x+5$
$9 x+3 y=15$

Example 3

Graph each system of equations and state its solution. Also, state whether the system is consistent or inconsistent and dependent or independent.
$8 x-4 y=12$
$12 x-6 y=12$

Example 4
Graph each system of equations and state its solution. Also, state whether the system is consistent or inconsistent and dependent or independent.
$y=4$
$3 x=-21$

Pg 129, 7-35, 49-53 all odds

Solving Systems of Equations Algebraically

 §3.22 Ways to Solve Algebraically

1. Substitution
2. Elimination

Example 1
Solve each system of equations by using substitution.
$x+y=5$
$3 x-2 y=20$

Example 2

Solve each system of equations by using substitution.
$x-2 y=1$
$3 x+2 y=19$

Example 3

Solve each system of equations by using Elimination.
$x+y=5$
$3 x-2 y=20$

Example 4

Solve each system of equations by using Elimination.
$7 x-4 y=17$
$3 x+5 y=14$

Example 5
Solve each system of equations by using Elimination.
$2 x-7 y=13$
$-4 x+14 y=6$

Pg 137, 5-37 odd

Cramer's Rule

Solving Systems of Equations

1. Graphing
2. Substitution
3. Elimination

4. Cramer's Rule

Determinant - an array of coefficients in rows and columns when the equations are written in standard form.

$$
\begin{aligned}
& \mathrm{ax}+\mathrm{b} \boldsymbol{y}=\mathrm{e} \\
& \mathrm{c} \boldsymbol{x}+\mathrm{d} \boldsymbol{y}=\mathrm{f}
\end{aligned} \quad=\operatorname{det} \mathrm{A}=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Value of $2^{\text {nd }}$ order determinant.

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Example 1

Find the value of each determinant.
$\left|\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right|$

Example 2

Find the value of each determinant.

$$
\left|\begin{array}{cc}
3 & -4 \\
-1 & -7
\end{array}\right|
$$

To find \mathbf{x}, divide A_{x}, the determinant with the x column replaced with the constant column, by $\operatorname{det} A$.

To find \mathbf{y}, divide A_{y}, the determinant with the y column replaced with the constant column, by $\operatorname{det} A$.

Example 3

Use Cramer's Rule to solve each system of equations.

$$
\begin{aligned}
& -3 x+5 y=-1 \\
& 2 x-3 y=1
\end{aligned}
$$

Example 4

Use Cramer's Rule to solve each system of equations.

$$
\begin{aligned}
& 2 x+3 y=-11 \\
& -3 x+4 y=-26
\end{aligned}
$$

Graphing Systems of Inequalities

System of Inequalities must be done by graphing
Example 1
$x \geq 5$
$x+y \leq 3$

Example 2
$5 y>-4 x-4$
$4 x+5 y>10$

Example 3
$y \leq 2 x-3$
$x+2 y \leq 4$

Example 4

Pg 150, 7-25

Linear Programming - a method for finding the maximum or minimum value of a function in two variables subject to given constraints on the variables.

Constraints - the inequalities in a system of inequalities whose graphs form the boundaries of the graph of the systems solution.

Feasible Region - the area of intersection of the graphs of inequalities in which every constraint is met.

Example 1

Find the maximum and minimum values of $\mathrm{f}(x, y)=2 x-3 y$ for the polygonal region determined by the system of inequalities.

$$
\begin{aligned}
& x \geq 1 \\
& y \geq 2 \\
& x+2 y \leq 9
\end{aligned}
$$

Example 2

Find the maximum and minimum values of $\mathrm{f}(x, y)=5 x+2 y$ for the polygonal region determined by the system of inequalities.
$x-3 y \leq 0$
$x-3 y \geq-15$
$4 x+3 y \geq 15$

Pg 157, 7-23 odd

$\frac{\text { Example } 1}{x+2 y-3 z}=50$
$2 x+y+2 z=3$
$2 x-5 y+4 z=-79$

Example 2

$3 x-6 y+3 z=33$
$2 x-4 y+2 z=22$
$4 x+2 y-z=-6$

Example 4
$2 a-3 b=13$
$3 b+c=-3$
$4 a-c=2$

