Algebra 2 Chapter 2 Test

Write the letter for the best answer.

Describe the transformation of $f(x) = x^2$ represented by *g*.

1. $g(x) = x^2 - 3$

- **A.** Translation 3 units up
- **B.** Translation 3 units down
- C. Vertical shrink by a factor of $\frac{1}{2}$
- **D.** Vertical stretch by a factor of 3

3. $g(x) = -7x^2$

- A. Vertical shrink by a factor of 7, reflection
- **B.** Vertical stretch by a factor of 7, reflection
- **C.** Vertical shrink by a factor of $\frac{1}{7}$, reflection
- **D.** Vertical stretch by a factor of $\frac{1}{7}$, reflection

- 2. $g(x) = (x+2)^2 + 5$
- A. Translation 5 units up, 2 left
- **B.** Translation 5 units up, 2 right
- C. Translation 5 units down, 2 left
- D. Translation 5 units down, 2 right

4. $g(x) = \frac{1}{3}(x-4)^2$

- A. Translation 4 units up, vertical shrink by a factor of $\frac{1}{3}$ B. Translation 4 units down, vertical shrink by a factor of $\frac{1}{3}$ C. Translation 4 units right, vertical shrink by a factor of $\frac{1}{3}$
- **D.** Translation 4 units left, vertical shrink by a factor of $\frac{1}{3}$

Write a rule for g described by the transformations of the graph of f.

5. $f(x) = (x + 1)^2 - 2$; vertical stretch by a factor of 3, translation 1 units up, followed by a translation 3 unit to the right.

A. $f(x) = 3(x-2)^2 - 1$ B. $f(x) = 3(x+4)^2 - 5$ C. $f(x) = 3(x-2)^2 - 7$ D. $f(x) = 3(x-2)^2 - 5$

6. $f(x) = 3(x-4)^2 + 6$; vertical shrink by a factor of $\frac{1}{3}$, translation 3 units up, followed by a translation 1 units to the left.

A.
$$f(x) = (x - 3)^2 + 9$$

B. $f(x) = (x - 5)^2 - 1$
C. $f(x) = (x - 3)^2 + 5$
D. $f(x) = \frac{1}{3}(x - 5)^2 + 5$

7. $f(x) = 2(x - 1)^2 + 1$; vertical stretch by a factor of 2, translation 3 units down, followed by a reflection in the *x*-axis.

A.
$$f(x) = -4(x-2)^2 - 1$$

B. $f(x) = -4(x-1)^2 - 2$
C. $f(x) = -4(x-1)^2 + 1$
D. $f(x) = -4(x-1)^2 - 1$

Find the vertex and the axis of symmetry for each function.

8. $f(x) = 3(x+2)^2 - 3$		9. $f(x) = -\frac{1}{4}(x-4)^2 + 1$	
A. $V: (2,3), AS: x = 2$	B. $V: (-2, -3), AS: x = -2$	A. $V: (4, -1), AS: x = 4$	B. $V: (4,1), AS: x = 4$
C. $V: (-2,3), AS: x = -2$	D. $V: (2, -3), AS: x = 2$	C. $V: (-4, -1), AS: x = -4$	D. $V: (-4,1), AS: x = -$

11. $f(x) = 3(x+2)^2 - 5$

Find the minimum or maximum value of each function. 10. $f(x) = -2(x-1)^2 + 4$

A. $Min = 4$	B. $Max = 4$	A. $Min = -5$	B. $Max = -5$
C. $Min = 1$	D. $Max = 1$	C. $Min = -2$	D. $Max = -2$

Find the domain and range of each function.

12. $f(x) = -3(x + x)$	$(1)^2 + 7$	13. $f(x) = \frac{2}{5}(x+6)^2$	$2^{2}-4$
A. $D: \mathbb{R}, R: y \leq 1$	B. $D: \mathbb{R}, R: y \le 7$	A. $D: \mathbb{R}, R: y \geq -6$	B. $D: \mathbb{R}, R: y \ge -4$
C. $D: \mathbb{R}, R: y \geq 1$	D. $D: \mathbb{R}, R: y \geq 7$	C. $D: \mathbb{R}, R: y \leq -6$	D. $D: \mathbb{R}, R: y \leq -4$

Graph each determine when the function is increasing and decreasing.

14. $f(x) = 3(x-1)^2 + 2$	15. $f(x) = -\frac{1}{3}(x+2)^2 - 5$
A. $inc: x < 1, dec: x > 1$	A. $inc: x < -5$, $dec: x > -5$
B. $dec: x < 1, inc: x > 1$	B. $dec: x < -5$, $inc: x > -5$
C. $inc: x < 2, dec: x > 2$	C. $inc: x < -2$, $dec: x > -2$
D. $dec: x < 2, inc: x > 2$	D. $dec: x < -2$, $inc: x > -2$

Graph each function. Find the *x*-intercept(s), vertex, and the axis of symmetry. 16. f(x) = -2(x-1)(x+5)

A. (0,1)(0,-5), V: (-2,18), AS: x = -2**B.** (0, -1)(0,5), V: (2, -14), AS: x = 2C. (-1,0)(5,0), V: (2, -14), AS: x = 2**D.** (1,0)(-5,0), V: (-2,18), AS: x = -2

								4										
[
ļ																		
-	_	_	-		_	_		-	_	_	_		_	_	_	-		
ł				-	-	-		-	-				-	-	-	-		
ł	-	_	-					-	-	_	-							
ł																		
l																		
ļ																		
1		_				_				_	_				_			
					_	_		-	_				_	_	_	-	-	Γ
ł	-	_	-		-	-		-	-	_	-	-	-	-	-	-		
ł																		
ł																		
ł					_	_		-	_				_	_	_	-		
ł	-		-		-	-		-	-		_			-	-	-		

Answer the following.

17. The graph shows the parabolic path of a performer who is shot out of a cannon, where y is the height (in feet) and x is the horizontal distance traveled (in feet). The performer lands in a net 60 feet from the cannon. What is the height of the performer when they are 50 feet from the cannon?

- A. about 17 feet **B.** about 18 feet
- C. about 19 feet
- **D.** about 20 feet

-4

Write an equation of the parabola in vertex form.

18. passes through (4,1) and has vertex (2,-1)

19. passes through (2,-3) and has vertex (-1,2)

A.
$$f(x) = \frac{2}{5}(x+2)^2 + 1$$

B. $f(x) = 2(x-2)^2 - 1$
C. $f(x) = \frac{1}{2}(x-2)^2 - 1$
D. $f(x) = \frac{1}{4}(x+2)^2 + 1$
A. $f(x) = -\frac{5}{9}(x+1)^2 + 2$
B. $f(x) = -\frac{1}{9}(x+1)^2 + 2$
C. $f(x) = \frac{1}{2}(x-2)^2 - 1$
D. $f(x) = \frac{1}{4}(x+2)^2 + 1$
D. $f(x) = \frac{3}{16}(x-1)^2 - 2$

20. passes through (1,3) and has vertex (2,0)

² + 2 - 2 - 2

21. passes through (-3,2) and has vertex (-1,7)

A.
$$f(x) = \frac{1}{3}x^2 + 2$$
A. $f(x) = -\frac{5}{4}(x+1)^2 + 7$ B. $f(x) = 3(x-2)^2$ B. $f(x) = -\frac{9}{4}(x+1)^2 + 7$ C. $f(x) = 3x^2 + 2$ C. $f(x) = -4(x-2)^2 + 7$ D. $f(x) = \frac{4}{3}x^2$ D. $f(x) = -2(x+2)^2 - 7$

Write an equation of the parabola in intercept form.

22. *x*-intercepts: 2 and 6; passes through (3,5)

A.
$$f(x) = -\frac{5}{3}(x-2)(x-6)$$

B. $f(x) = \frac{1}{9}(x-2)(x-6)$
C. $f(x) = \frac{3}{2}(x+2)(x+6)$
D. $f(x) = -\frac{8}{3}(x+2)(x+6)$
A. $f(x) = -\frac{3}{10}(x-7)(x-1)$
B. $f(x) = -\frac{1}{20}(x-7)(x-1)$
C. $f(x) = \frac{3}{4}(x+7)(x+1)$
D. $f(x) = -\frac{8}{3}(x+2)(x+6)$
D. $f(x) = \frac{3}{4}(x+7)(x+1)$

24. *x*-intercepts: -4 and 2; passes through (-2,-6)

A.
$$f(x) = 0$$
A. $f(x) = \frac{3}{4}(x)(x-6)$ B. $f(x) = \frac{1}{2}(x-4)(x+2)$ B. $f(x) = -\frac{5}{16}(x)(x+6)$ C. $f(x) = \frac{2}{3}(x+4)(x-2)$ C. $f(x) = \frac{4}{5}(x)(x-6)$ D. $f(x) = \frac{3}{4}(x+4)(x-2)$ D. $f(x) = \frac{5}{8}(x)(x+6)$

Write an equation of the parabola in intercept form.

26. passes through (-3,12)(-1,-2)(2,7)

A. $y = 2x^2 - 3x - 5$ B. $y = 2x^2 + x - 3$ C. $y = 2x^2 - x + 1$ D. $y = 2x^2 + x - 5$

Answer the following.

27. The table shows the number of hats a company can sell at different prices. Determine whether the data represents a function that is linear, quadratic, or neither. Write a function to determine how many hats the company will sell if it charges \$10 for each hat.

Price (dollars),x	5	6	7	8	9		
Hats sold (thousands),y	192	154	124	102	88		
A. 77,000 B. 82,000 C. 85,000 D. 89,000							

28. The function $y = -0.01x(x - 25)^2 + 36$ models the path of a football kicked by a player, where x is the horizontal distance (in yards) and y is the height (in yards). The player kicks the ball a second time so that it travels the same horizontal distance but reaches a maximum height that is 11 yards less than the maximum height of the first kick. Write a function that models the path of the second kick.

A.
$$y = -\frac{1}{25}(x - 25)^2 + 47$$

B. $y = -\frac{1}{25}(x - 36)^2 + 47$
C. $y = -\frac{1}{25}(x - 25)^2 + 25$
D. $y = -\frac{1}{25}(x - 36)^2 + 25$