Angles and Degree Measure §1.1

<u>Degree measure of an angle</u> – is the number of degrees in the intercepted arc of a circle centered at the vertex. The degree measure is **positive** if the rotation is **counterclockwise** and **negative** if the rotation is **clockwise**.

<u>Coterminal Angles</u> – angles α and β are coterminal if and only if there is an angle *k* such that: $m(\beta) = m(\alpha) + k(360)$

coterminal angles differ by a multiply of 360

Example 1

Find the degree measures of two positive and two negative angles that are coterminal with each given angle.

a. 50° b. -120 °

Example 2

Determine whether the given pair of angles are coterminal.

a. 190 °, -170 ° b. 150 °, 880 °

Example 3

Name the quadrant in which the angles lies.

a. 740 ° b. -510 °

Pg 49, 1-44

Angles and Degree Measure §1.1 (Day 2)

1 Degree = 60 minutes1 Minute = 60 seconds

1 Minute =
$$\frac{1}{60}$$
 degree
1 second = $\frac{1}{60}$ minute or $\frac{1}{3600}$ degree

Example 1 Convert into decimal degrees.

67°16'40"

Graphing Calculator: Type 67 2nd APPS 1

16 2nd APPS 2 40 ALPHA +ENTER

Example 2 Convert the angle to degree-minute-seconds.

54.125

Graphing Calculator: Type 54.125

2nd APPS 4 (DMS) ENTER

Example 3 Perform the indicated operations.

b. 58° - 7°23'48" a. 23°42'27" c. 85°31'27" ÷ 3

+ 91°36'50"

Pg 49, 45-78

Radian Measure, Arc Length, and Area §1.2

Unit Circle

r = 1 $C = 2\pi r$

Therefore, $C = 2\pi$

 α = angle in degrees s = radian measure of α

<u>Radian Measure</u> – of the angle α in standard position is the directed length of the intercepted arc on the unit circle.

Convert Degrees to Radians

Use $\frac{\pi}{180}$ for conversion factor

Example 1

Convert each degree measure to radian measure.

a. 360 b. 90

Convert Radians to Degrees

Use $\frac{180}{--}$ for conversion factor π

Example 2 Convert each radian measure to degree measure.

2π	, 5π	3π
a. —	D. —	c. —
3	4	2

Example 3 Find two positive and two negative angles using radian measure that are coterminal to each.

a.
$$\frac{\pi}{4}$$
 b. $\frac{5\pi}{6}$

Radian Measure, Arc Length, and Area §1.2 (Day 2)

Arc Length: $s = \alpha r$

Example 1

Find the arc length intercepted by the given central α in a circle of radius *r*.

a. $\alpha = \frac{\pi}{3}, r = 6$ ft b. $\alpha = 120^{\circ}, r = 90$ in

Example 2

The wagon wheel below has a diameter of 28 inches and an angle of 30° between the spokes. What is the length of the arc *s* between 2 adjacent spokes?

Radius of earth = 3950 mi

Area of a circle

 $A = \pi r^2$

Sector – part of circle

Example 4 Find the area of the sector for the following circle.

$$\alpha = \frac{2\pi}{3}, r = 6 \text{ ft}$$

Pg 59, 60-78 even, 79-88 all

The Trigonometric Functions §1.4

SOH CAH TOA

Inverses		
$\sin = \frac{\text{opposite}}{\text{hypotenuse}}$	$\csc = \frac{\text{hypotenuse}}{\text{opposite}}$	$\csc = \frac{1}{\sin}$
$\cos = \frac{\text{adjacent}}{\text{hypotenuse}}$	$sec = \frac{hypotenuse}{adjacent}$	$\sec = \frac{1}{\cos 2}$
$\tan = \frac{\text{opposite}}{\text{adjacent}}$	$\cot = \frac{adjacent}{opposite}$	$\cot = \frac{1}{\tan}$
ain a -		Coordinate Plane

Example 1

Find the values of the six trigonometric functions of the angle α in standard position whose terminal side passes through (2, 1).

Example 2 Find the exact values of each (notice multiples of 90, UNIT CIRCLE).

a. sin 90	b. cos 180	c. tan 90
d. sec 180	e. cot 270	

<u>45-45-90</u>

Coordinate Plane

Example 3 Find the exact values (notice multiples of 45).

a. sin 45	b. tan 45	c. sec 45

d. cos 135 e. csc
$$\frac{5\pi}{4}$$
 f. tan $-\frac{9\pi}{4}$

The Trigonometric Functions §1.4 (Day 2)

30-60-90

Coordinate Plane

Example 1

Find the exact value of each function.

a. sin 60 b. tan 150

c. cos -30	d. sin -	π
		3

Example 2 Find each with a calculator

a. cos 3.17	b. sin -25.67°	c. sin	$\frac{3\pi}{4}$
d. csc 2.73	e. sec 37.42 °	f. cot	$\frac{5\pi}{6}$

Pg 79, 31-48, 59-70

The Unit Circle §1.4 (Extend)

However, the unit circle has r = 1. Therefore,

However, the unit circle has r = 1. Therefore,

Unit Circle Worksheet

The Fundamental Identity and Reference Angles §1.5

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $r = \sqrt{x^2 + y^2}$

Example 1

Find $\cos \alpha$ if $\sin \alpha = \frac{3}{5}$, and α is an angle in Quadrant II.

Reference Angles

Example 2

Find each using reference angles.

a. sin 150 b. cos 150

c. tan 240 d. sin $-\frac{\pi}{6}$

Pg 88, 1-20, 21-32 (change directions to find exact)

Right Triangle Trigonometry §1.6

Example 1

Find sin $\alpha = \frac{1}{2}$

Example 2 Find angle α where $0 \le \alpha \le 90$.

a.
$$\cos \alpha = \frac{\sqrt{3}}{2}$$
 b. $\tan = 1$

c.
$$\sin \alpha = 0$$
 d. $\cos \alpha = \frac{1}{\sqrt{2}}$

Example 3

The following problems are exactly the same as the previous example.

a.
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) =$$
 b. $\tan^{-1}(45)$

c.
$$\sin^{-1}(0) =$$
 d. $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$

<u>Inverses</u>

 $\sin^{-1}(x) = \alpha$ provided $\sin \alpha = x$ and $-90^{\circ} \le \alpha \le 90^{\circ}$ $\cos^{-1}(x) = \alpha$ provided $\cos \alpha = x$ and $0^{\circ} \le \alpha \le 180^{\circ}$ $\tan^{-1}(x) = \alpha$ provided $\tan \alpha = x$ and $-90^{\circ} \le \alpha \le 90^{\circ}$

Example 4

Evaluate each expression in degrees, may use calculator.

a.
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 b. $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ c. $\tan^{-1}\sqrt{3}$

d. $\cos^{-1}\left(-\frac{3}{7}\right)$ e. \tan^{-1} 6.1

Pg 98, 1-16

Right Triangle Trigonometry §1.6 (Day 2)

Example 1 Find all 6 trig functions of α .

Example 2 Solve each triangle for the remaining parts.

Example 3

<u>Angle of Elevation</u> – the angle between the line of sight and the horizontal when the observer looks *upward*.

<u>Angle of Depression</u> – the angle between the line of sight when an observer looks downward.

Example 4

If you are lying down on the top of the roof at APHS looking at your trig book with an angle of depression of 57.4°, how tall is the high school if you book is lying 41 feet away.

Example 5

If one side of a drawbridge rises with an angle of elevation of 35° at its fullest height, how far has the drawbridge risen, given its length to be 68 feet?

Pg 98, 17-30, 33-37