Degree measure of an angle - is the number of degrees in the intercepted arc of a circle centered at the vertex. The degree measure is positive if the rotation is counterclockwise and negative if the rotation is clockwise.

Coterminal Angles - angles α and β are coterminal if and only if there is an angle k such that: $m(\beta)=m(\alpha)+k(360)$
coterminal angles differ by a multiply of 360^{}

Example 1

Find the degree measures of two positive and two negative angles that are coterminal with each given angle.
a. 50°
b. -120°

Example 2

Determine whether the given pair of angles are coterminal.
a. $190^{\circ},-170^{\circ}$
b. $150^{\circ}, 880^{\circ}$

Example 3

Name the quadrant in which the angles lies.
a. 740°
b. -510°

Angles and Degree Measure
§1.1 (Day 2)

1 Degree $=60$ minutes
1 Minute $=60$ seconds
1 Minute $=\frac{1}{60}$ degree
1 second $=\frac{1}{60}$ minute or $\frac{1}{3600}$ degree

Example 1

Convert into decimal degrees.
$67^{\circ} 16^{\prime} 40^{\prime \prime}$

Graphing Calculator:

Type $672^{\text {nd }}$ APPS 1
$162^{\text {nd }}$ APPS 2
40 ALPHA +
ENTER

Example 2

Convert the angle to degree-minute-seconds.
54.125

Graphing Calculator:

Type 54.125
$2^{\text {nd }}$ APPS
4 (DMS)
ENTER

Example 3

Perform the indicated operations.
a. $23^{\circ} 42^{\prime} 27^{\prime \prime}$
b. $58^{\circ}-7^{\circ} 23^{\prime} 48^{\prime \prime}$
c. $85^{\circ} 31^{\prime} 27^{\prime \prime} \div 3$
$+91^{\circ} 36^{\prime} 50^{\prime \prime}$

Pg 49, 45-78

Unit Circle

$\mathrm{r}=1$
$C=2 \pi r$
Therefore, $C=2 \pi$
$\alpha=$ angle in degrees
$s=$ radian measure of α

$s=\alpha$ on the unit circle

Radian Measure - of the angle α in standard position is the directed length of the intercepted arc on the unit circle.

Convert Degrees to Radians

Use $\frac{\pi}{180}$ for conversion factor 180

Example 1

Convert each degree measure to radian measure.
a. 360
b. 90
c. 45
d. 30

Convert Radians to Degrees
Use $\frac{180}{\pi}$ for conversion factor

Example 2

Convert each radian measure to degree measure.
a. $\frac{2 \pi}{3}$
b. $\frac{5 \pi}{4}$
c. $\frac{3 \pi}{2}$

Example 3

Find two positive and two negative angles using radian measure that are coterminal to each.
a. $\frac{\pi}{4}$
b. $\frac{5 \pi}{6}$

Pg 59, 2-58 even

Radian Measure, Arc Length, and Area

Arc Length: $s=\alpha r$

Example 1

Find the arc length intercepted by the given central α in a circle of radius r.
a. $\alpha=\frac{\pi}{3}, r=6 \mathrm{ft}$
b. $\alpha=120^{\circ}, r=90$ in

Example 2

The wagon wheel below has a diameter of 28 inches and an angle of 30° between the spokes. What is the length of the arc s between 2 adjacent spokes?

Example 3

Find the central angle.

Radius of earth $=3950 \mathrm{mi}$

Area of a circle

$$
A=\pi r^{2}
$$

Sector - part of circle

Example 4

Find the area of the sector for the following circle.
$\alpha=\frac{2 \pi}{3}, r=6 \mathrm{ft}$

Pg 59, 60-78 even, 79-88 all

SOH CAH TOA

$\sin A=$	$\sin B=$
$\cos A=$	$\cos B=$
$\tan A=$	$\tan B=$

Inverses

$\sin =\frac{\text { opposite }}{\text { hypotenuse }}$
cos $=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan =\frac{\text { opposite }}{\text { adjacent }}$

$\sin \alpha=$	$\csc \alpha=$
$\cos \alpha=$	$\sec \alpha=$
$\tan \alpha=$	$\cot \alpha=$

Example 1

Find the values of the six trigonometric functions of the angle α in standard position whose terminal side passes through $(2,1)$.

Example 2

Find the exact values of each (notice multiples of 90, UNIT CIRCLE).
a. $\sin 90$
b. $\cos 180$
c. $\tan 90$
d. $\sec 180$
e. $\cot 270$

45-45-90

Coordinate Plane

Example 3

Find the exact values (notice multiples of 45).
a. $\sin 45$
b. $\tan 45$
c. $\sec 45$
d. $\cos 135$
e. $\csc \frac{5 \pi}{4}$
f. $\tan -\frac{9 \pi}{4}$

Coordinate Plane

Example 1

Find the exact value of each function.
a. $\sin 60$
b. $\tan 150$
c. $\cos -30$
d. $\sin \frac{8 \pi}{3}$

Example 2

Find each with a calculator
a. $\cos 3.17$
b. $\sin -25.67^{\circ}$
c. $\sin \frac{3 \pi}{4}$
d. csc 2.73
e. $\sec 37.42^{\circ}$
f. $\cot \frac{5 \pi}{6}$

However, the unit circle has $r=1$. Therefore,

However, the unit circle has $r=1$. Therefore,

Unit Circle Worksheet

The Fundamental Identity and Reference Angles §1.5

$$
\sin \alpha=\frac{y}{r} \quad \cos \alpha=\frac{x}{r} \quad r=\sqrt{x^{2}+y^{2}}
$$

Example 1

Find $\cos \alpha$ if $\sin \alpha=\frac{3}{5}$, and α is an angle in Quadrant II.

Reference Angles

Example 2

Find each using reference angles.
a. $\sin 150$
b. $\cos 150$
c. $\tan 240$
d. $\sin -\frac{\pi}{6}$

Right Triangle Trigonometry

$\sin +$ $\cos -$ $\tan -$ \longleftrightarrow	$\sin +$ $\cos +$ $\tan +$ $\sin -$ $\cos -$ $\tan +$

Example 1

Find $\sin \alpha=\frac{1}{2}$

Example 2

Find angle α where $0 \leq \alpha \leq 90$.
a. $\cos \alpha=\frac{\sqrt{3}}{2}$
b. $\tan =1$
c. $\sin \alpha=0$
d. $\cos \alpha=\frac{1}{\sqrt{2}}$

Example 3

The following problems are exactly the same as the previous example.
a. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$
b. $\tan ^{-1}(45)$
c. $\sin ^{-1}(0)=$
d. $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Inverses

$$
\begin{aligned}
& \sin ^{-1}(x)=\alpha \text { provided } \sin \alpha=\mathrm{x} \text { and }-90^{\circ} \leq \alpha \leq 90^{\circ} \\
& \cos ^{-1}(x)=\alpha \text { provided } \cos \alpha=\mathrm{x} \text { and } 0^{\circ} \leq \alpha \leq 180^{\circ} \\
& \tan ^{-1}(x)=\alpha \text { provided } \tan \alpha=\mathrm{x} \text { and }-90^{\circ} \leq \alpha \leq 90^{\circ}
\end{aligned}
$$

Example 4

Evaluate each expression in degrees, may use calculator.
a. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
c. $\tan ^{-1} \sqrt{3}$
d. $\cos ^{-1}\left(-\frac{3}{7}\right)$
e. $\tan ^{-1} 6.1$

Right Triangle Trigonometry
 §1.6 (Day 2)

Example 1

Find all 6 trig functions of α.

Example 2

Solve each triangle for the remaining parts.

Example 3

Angle of Elevation - the angle between the line of sight and the horizontal when the observer looks upward.

Angle of Depression - the angle between the line of sight when an observer looks downward.

Example 4

If you are lying down on the top of the roof at APHS looking at your trig book with an angle of depression of 57.4°, how tall is the high school if you book is lying 41 feet away.

Example 5

If one side of a drawbridge rises with an angle of elevation of 35° at its fullest height, how far has the drawbridge risen, given its length to be 68 feet?

