Square Root Function - contains the square root of the variable.

Parent Function:
$f(x)=\sqrt{x}$
Type of Graph:
Curve
Domain:
$x \geq 0$
Range:
$y \geq 0$

Example 1

Graph $f(x)=2 \sqrt{x}$ and state the domain and range.

Example 2

Graph $f(x)=\frac{1}{3} \sqrt{x}$ and state the domain and range.

Example 3

Graph $g(x)=\sqrt{x}+3$ and state the domain and range.

Example 4
Graph $h(x)=\sqrt{x-4}$ and state the domain and range.

Example 5
Graph $h(x)=-3 \sqrt{x}+1$ and state the domain and range.

Pg 608,1-7,11-17,23-29,35,37 odds

$\underline{\text { Radical Expression }}$ - contains a radical $(\sqrt{ })$
Perfect Square List

Simplify Each.
Example 1
$\sqrt{52}$

$$
\text { Example } 2
$$

$\frac{\text { Example } 4}{\sqrt{2} \cdot \sqrt{14}}$
$\sqrt{x^{2}}=x$????? (what if $x=-3$)
Even Root, Odd Exponent $=|x|$
$\frac{\text { Example } 5}{\sqrt{45 a^{4} b^{5} c^{6}}}$
Example 6
$\sqrt{90 x^{2} y^{4} z^{5}}$

Example 7
$\sqrt{\frac{7}{3}}$
Example 8
$\sqrt{\frac{10}{25}}$

Example 9
$\frac{2}{4-\sqrt{5}}$
Example 10
$\frac{6}{2+\sqrt{3}}$

Pg 615,1-33,37-47 odds

§10.3

Like Terms with Radicals
To add or subtract radical expressions, the radicands (inside $\sqrt{ }$) must be the same.

Example 1
$6 \sqrt{3}+5 \sqrt{3}$

Example 3
$4 \sqrt{7}+12 \sqrt{13}+9 \sqrt{7}-5 \sqrt{13}$

Example 5
$\sqrt{24}-\sqrt{54}+\sqrt{96}$

Example 2

$$
8 \sqrt{5}-3 \sqrt{5}+7 \sqrt{5}
$$

Example 4
$6 \sqrt{27}+8 \sqrt{12}+2 \sqrt{75}$

Example 6
$2 \sqrt{3} \cdot 4 \sqrt{6}$

Example 7
$4 \sqrt{2}(3 \sqrt{2}+2 \sqrt{6})$

Example 8
Find the area of the rectangle in simplest form

Pg 621,1-28

Radical Equations - equations that contain variables in the radicand (\sqrt{x}).

Solve.
Example1
Example 2
$\sqrt{x-3}+8=15$
$4+\sqrt{h+1}=14$

Extraneous Solutions - solutions that do not satisfy the original equation. MUST CHECK SOLUTIONS

Example 3
$\sqrt{2-y}=y$
Example 4
$x-3=\sqrt{x-1}$

Example 5
$\sqrt{x+5}=x+3$

Example 6

An object is dropped from an unknown height and reaches the ground in 5 seconds. Use the equation $t=\frac{\sqrt{h}}{4}$, where t is time in seconds and h is height in feet, to find the height from which the object was dropped.

Pg 626,1-27 odds

Right Triangle - a triangle that contain exactly one 90 degree angle.

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Find the missing length to the nearest hundredth.

18

Example 3

Tim recently bought a 62 inch television for his man cave in the basement. The length is $50 \frac{1}{4}$ inches. Find the height.

Find the missing length to the nearest hundredth.
Example 4

Converse of Pythagorean Theorem

If $a^{2}+b^{2}=c^{2}$,then you have a right triangle.
If $a^{2}+b^{2} \neq c^{2}$, then you do not have a right triangle.
Determine whether the following can be sides of a right triangle.

Example 5

Example 6
7, 11, 16
$9,12,15$

Pg 632,18-37

Distance Formula - the distance between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Find the distance between the two points
Example 1
Example 2
$(1,2)$ and $(-3,0)$
$(1,-2)$ and $(5,3)$

Example 3
$(-5,-8)$ and $(-7,-2)$

Example 4
Find the possible values for a if the distance between points $(2,-1)$ and $(a,-4)$ is 5 .

Midpoint Formula - the midpoint M of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula:

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Find the coordinates of the midpoint given the endpoints.

Example 5
$(8,-3)$ and $(-4,-1)$

Example 6
$(6,8)$ and $(3,4)$

Pg 639,19-47 odds

Similar Triangles - triangles that have the same shape but not the same size.

Similar Triangles

1. Corresponding Angles are Equal
2. Corresponding Sides are Proportional

Determine whether the two triangles are similar.

Example 2

4.5 cm

Example 3

Find the missing measure(s) for the pair of similar triangles.

Example 4

Example 5

Example 7

Jessica is 5 feet 6 inches tall and her shadow is 3 feet. She is standing next to a tree that casts a shadow of 7.5 feet long, how tall is the tree?

Pg 644,1-23,35-45 odds

Trigonometry - the study of the properties of triangles and trigonometric functions and their applications.

Trigonometric Ratios

1. sine (\sin)
2. cosine (\cos)
3. tangent (tan)

SOH CAH TOA

$\sin =\frac{\text { opposite }}{\text { hypotenuse }}$
cos $=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan =\frac{\text { opposite }}{\text { adjacent }}$

$\sin A=$	$\sin B=$
$\cos A=$	$\cos B=$
$\tan A=$	$\tan B=$

Example 1

Express each as a fraction and decimal (nearest thousandth).
$\sin \mathrm{L}=$
$\cos \mathrm{L}=$
$\tan \mathrm{L}=$

$$
\begin{aligned}
& \sin N= \\
& \cos N= \\
& \tan N=
\end{aligned}
$$

Example 2

Use a calculator to find each value (round to the nearest ten-thousandth).
a. $\sin 63$
b. $\cos 41$

Example 3

Find x.

Example 4

A fitness trainer sets the incline for a treadmill to 7°. If the length of the walking surface is 5 ft ., how many inches was the treadmill raised from the floor?

Example 5

Find x.

To find an Angle:

1. $\sin ^{-1}$
2. $\cos ^{-1}$
3. $\tan ^{-1}$

Example 6

Find the measure of each angle to the nearest tenth of a degree.
a. $\cos \mathrm{A}=.7215$
b. $\tan \mathrm{A}=.3148$

Example 7

Find all remaining parts of the triangle.
a.

b.

Pg 652,1-41 odds

