Square Root Functions §10.1

<u>Square Root Function</u> – contains the square root of the variable.

Radical: radical sign
$$\sqrt[3]{27} \approx 3\sqrt{27}$$
 radicand

Parent Function:	$f(x) = \sqrt{x}$	2
Type of Graph:	Curve	1 - 4 - 3 - 3 - 4 - 6 - 1 - 1 - 3 - 4 -
Domain:	$x \ge 0$	-1- - -2-
Range:	$y \ge 0$	4-

Example 1 Graph $f(x) = 2\sqrt{x}$ and state the domain and range.

Example 3 Graph $g(x) = \sqrt{x} + 3$ and state the domain and range.

Example 4

Graph $h(x) = \sqrt{x-4}$ and state the domain and range.

Example 5 Graph $h(x) = -3\sqrt{x} + 1$ and state the domain and range.

									•									
Г	Т	Т	Γ															
Г	Т																	
F																		
F	+	+																
h	+	+																
F	+	-	1					H										
H	+	+	1			-	-	H	-		-	-	-	-		H	-	
H	+	+	+			-	-	H	-		-	-	-	-	-	-	+	
H	+	+	-			-	-	\vdash	-			-	-	-	-	-	-	
4				_														
-																		
1																		
ľ																		
-					_													
					_					_								
									_									

Pg 608,1-7,11-17,23-29,35,37 odds

Simplifying Radical Expressions §10.2

<u>Radical Expression</u> – contains a radical ($\sqrt{}$)

Perfect Square List

Simplify Each. <u>Example 1</u> $\sqrt{52}$

 $\frac{\text{Example } 2}{\sqrt{80}}$

 $\frac{\text{Example 3}}{\sqrt{54}}$

 $\frac{\text{Example 4}}{\sqrt{2} \cdot \sqrt{14}}$

$$\sqrt{x^2} = x$$
 ????? (what if $x = -3$)

Even Root, Odd Exponent =
$$|x|$$

Example 5	Example 6
$\sqrt{45a^4b^5c^6}$	$\sqrt{90x^2y^4z^5}$

E	<u>xample</u>	7
	7	
	<u>·</u> 3	

Example 9			
2			
$\overline{4 - \sqrt{5}}$			

$\frac{\text{Example 8}}{\sqrt{\frac{10}{25}}}$
Example 10

0	
2 +	3

1

Pg 615,1-33,37-47 odds

Operations with Radical Expressions \$10.3

To add or subtract radical expressions, the radicands (inside $\sqrt{2}$) must be the same.

 $\frac{\text{Example 1}}{6\sqrt{3} + 5\sqrt{3}}$

 $\frac{\text{Example 2}}{8\sqrt{5} - 3\sqrt{5}} + 7\sqrt{5}$

 $\frac{\text{Example 3}}{4\sqrt{7} + 12\sqrt{13} + 9\sqrt{7} - 5\sqrt{13}}$

Like Terms with Radicals

 $\frac{\text{Example 4}}{6\sqrt{27} + 8\sqrt{12} + 2\sqrt{75}}$

 $\frac{\text{Example 5}}{\sqrt{24} - \sqrt{54} + \sqrt{96}}$

 $\frac{\text{Example 6}}{2\sqrt{3} \cdot 4\sqrt{6}}$

 $\frac{\text{Example 7}}{4\sqrt{2}} (3\sqrt{2} + 2\sqrt{6})$

Example 8 Find the area of the rectangle in simplest form

Radical Equations §10.4

<u>Radical Equations</u> – equations that contain variables in the radicand (\sqrt{x}).

Solve.	
Example1	Example 2
$\sqrt{x-3} + 8 = 15$	$4 + \sqrt{h+1} = 14$

Extraneous Solutions – solutions that do not satisfy the original equation. MUST CHECK SOLUTIONS

Example 3	Example 4
$\sqrt{2 - y} = y$	$x - 3 = \sqrt{x - 1}$

 $\frac{\text{Example 5}}{\sqrt{x+5}} = x+3$

Example 6

An object is dropped from an unknown height and reaches the ground in 5 seconds. Use the equation $t = \frac{\sqrt{h}}{4}$, where *t* is time in seconds and *h* is height in feet, to find the height from which the object was dropped.

Pg 626,1-27 odds

The Pythagorean Theorem §10.5

<u>Right Triangle</u> – a triangle that contain exactly one 90 degree angle.

Pythagorean Theorem

Find the missing length to the nearest hundredth. Example 1

Tim recently bought a 62 inch television for his man cave in the basement. The length is $50\frac{1}{4}$ inches. Find the height.

9

Find the missing length to the nearest hundredth. Example 4

Converse of Pythagorean Theorem

If $a^2 + b^2 = c^2$, then you <u>have</u> a right triangle.

If $a^2 + b^2 \neq c^2$, then you <u>do not have</u> a right triangle.

Determine whether the following can be sides of a right triangle. <u>Example 5</u> 7, 11, 16 <u>Example 6</u> 9, 12, 15

Pg 632,18-37

The Distance and Midpoint Formulas \$10.6

<u>Distance Formula</u> – the distance between two points with coordinates (x_1, y_1) and (x_2, y_2) is given by the formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Find the distance between the two points <u>Example 1</u> (1, 2) and (-3, 0)

Example 3 (-5, -8) and (-7, -2)

Example 4 Find the possible values for *a* if the distance between points (2, -1) and (a, -4) is 5.

<u>Midpoint Formula</u> – the midpoint M of a line segment with endpoints (x_1, y_1) and (x_2, y_2) is given by the formula:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Find the coordinates of the midpoint given the endpoints.Example 5Example 6(8, -3) and (-4, -1)(6, 8) and (3, 4)

Pg 639,19-47 odds

Similar Triangles §10.7

<u>Similar Triangles</u> – triangles that have the same shape but not the same size.

Similar Triangles

- 1. Corresponding Angles are Equal
- 2. Corresponding Sides are Proportional

Determine whether the two triangles are similar.

Find the missing measure(s) for the pair of similar triangles.

Example 7

Jessica is 5 feet 6 inches tall and her shadow is 3 feet. She is standing next to a tree that casts a shadow of 7.5 feet long, how tall is the tree?

Pg 644,1-23,35-45 odds

Trigonometric Ratios §10.8

<u>**Trigonometry**</u> – the study of the properties of triangles and trigonometric functions and their applications.

Trigonometric Ratios

- 1. sine (sin)
- 2. cosine (cos)
- 3. tangent (tan)

sin =	opposite			
	adiacent			
$\cos =$	hypotenuse			
tan =	opposite			
	adjacent			. F
sin A	_	sin B =		
cos A		$\cos B =$		
tan A	=	tan B =	A	

Example 1

Express each as a fraction and decimal (nearest thousandth).

sin L = cos L = tan L =	sin N = cos N = tan N =	N 8 M 45
		^{IVI} 15

Example 2

Use a calculator to find each value (round to the nearest ten-thousandth).

a. sin 63

b. cos 41

Example 3

Find *x*.

Example 4

A fitness trainer sets the incline for a treadmill to 7° . If the length of the walking surface is 5 ft., how many inches was the treadmill raised from the floor?

 $\frac{\text{Example 5}}{\text{Find } x.}$

To find an Angle:

- 1. \sin^{-1}
- 2. \cos^{-1}
- 3. \tan^{-1}

Example 6

Find the measure of each angle to the nearest tenth of a degree.

a. $\cos A = .7215$ b. $\tan A = .3148$

Example 7 Find all remaining parts of the triangle.

Pg 652,1-41 odds

