6.1-6.3 Quiz Review

Solve the system of equations.

1. $\left\{\begin{array}{l}x+7 y=50 \\ x^{2}+y^{2}=100\end{array}\right.$
2. $\left\{\begin{array}{l}2 a=2-3 b \\ 6 b+4 a=7\end{array}\right.$
3. $\left\{\begin{array}{l}x^{2}+y^{2}=65 \\ y=3 x+25\end{array}\right.$
4. $\left\{\begin{array}{l}3 x^{2}+3 y=39 \\ x^{2}+y^{2}=25\end{array}\right.$
5. $\left\{\begin{array}{l}x+y-2 z=-1 \\ 4 x-y+3 z=3 \\ 3 x+2 y-z=4\end{array}\right.$
6. $\left\{\begin{array}{l}2 x-3 y+2 z=0 \\ 3 x-4 y+z=-20 \\ x+2 y-z=16\end{array}\right.$
7. $\left\{\begin{array}{l}2 x+5 y=11 \\ 8 x-y=2\end{array}\right.$
8. $\left\{\begin{array}{l}x=-6 y+24 \\ 2 x-5 y=-3\end{array}\right.$
9. Find the quadratic equation of the form $y=a x^{2}+b x+c$ whose graph passes through the points $(2,-3),(4,-15)$ and $(-2,-27)$.
10. Airport walkways: As part of an algebra field trip Jason takes his class to the airport to use their moving walkways for a demonstration. The class Measures the longest walkway, which turns out to be 256 feet long. Using a stop watch, Jason shows it takes him just 32 seconds to complete the walk going the same direction as the walkway. Walking in a direction opposite the walkway, it takes him 320 seconds - 10 times as long! What is Jason's walking speed and the speed of the walkway?
11. Find the quadratic equation of the form $y=a x^{2}+b x+c$ whose graph passes through the points $(2,-6),(6,-10)$ and $(-2,14)$.
