5.6 Composition of Functions

Learning Target Evaluate and find compositions of functions.
Success Criteria - I can evaluate a composition of functions.

- I can find a composition of functions.
- I can state the domain of a composition of functions.

EXPLORE IT ! Finding a Composition of Functions

Work with a partner. The formulas below represent the temperature F (in degrees Fahrenheit) when the temperature is C degrees Celsius, and the temperature C when the temperature is K (Kelvin).

$$
F=\frac{9}{5} C+32 \quad C=K-273
$$

a. Write an expression for F in terms of K.
b. Given that

$$
f(x)=\frac{9}{5} x+32
$$

and

$$
g(x)=x-273
$$

write an expression for $f(g(x))$. What does $f(g(x))$ represent in this situation?
c. Water freezes at about 273 Kelvin. Find $f(g(273))$. Does your answer make sense? Explain your reasoning.
d. Interpret the point shown on the graph.

Temperature Conversion

Evaluating Compositions of Functions

composition, p. 268
You have combined functions by finding sums, differences, products, and quotients of functions. Another way of combining two functions is to form a composition.

KEY IDEA

Composition of Functions

The composition of a function g with a function f is

$$
h(x)=g(f(x)) .
$$

The domain of h is the set of all x-values such that x is in the domain of f and $f(x)$ is in the domain of g.

domain of g range of g

EXAMPLE 1 Evaluating Compositions of Functions

Let $f(x)=\sqrt{2 x+1}$ and $g(x)=x^{2}-4$. Find the indicated value.
a. $g(f(4))$
b. $f(g(2))$
c. $g(g(-2))$

SOLUTION

a. To evaluate $g(f(4))$, first find $f(4)$.

$$
f(4)=\sqrt{2(4)+1}=\sqrt{8+1}=\sqrt{9}=3
$$

Then $g(f(4))=g(3)=3^{2}-4=9-4=5$.
$>$ So, $g(f(4))$ is 5 .

READING

As with subtraction and division of functions, you need to be aware of the order of functions when they are composed. In general, $f(g(x)) \neq g(f(x))$.
b. To evaluate $f(g(2))$, first find $g(2)$.

$$
g(2)=2^{2}-4=4-4=0
$$

Then $f(g(2))=f(0)=\sqrt{2(0)+1}=\sqrt{0+1}=\sqrt{1}=1$.
So, $f(g(2))$ is 1 .
c. To evaluate $g(g(-2))$, first find $g(-2)$.

$$
g(-2)=(-2)^{2}-4=4-4=0
$$

Then $g(g(-2))=g(0)=0^{2}-4=0-4=-4$.

$$
\text { So, } g(g(-2)) \text { is }-4
$$

Let $f(x)=x-2, g(x)=x^{2}$, and $h(x)=\frac{x+5}{2}$. Find the indicated value.

1. $f(g(-1))$
2. $g(h(-7))$
3. $h(g(5))$
4. $f(f(0))$
5. MP STRUCTURE For functions f and $g, f(2)=-3$ and $g(-3)=10$. Find $g(f(2))$.

Finding Compositions of Functions

EXAMPLE 2 Finding Compositions of Functions

Let $f(x)=5 x^{-1}$ and $g(x)=3 x-3$. Perform the indicated composition and state the domain.
a. $f(g(x))$
b. $g(f(x))$
c. $f(f(x))$

STUDY TIP

$g(1)=0$ is not in the domain of f because $f(0)=\frac{5}{0}$, which is undefined.

SOLUTION

a. | $f(g(x))$ | $=f(3 x-3)$ | | Substitute $3 x-3$ for $g(x)$. |
| ---: | :--- | ---: | :--- |
| | $=5(3 x-3)^{-1}$ | | Replace x with $3 x-3$ in $f(x)$. |
| | $=\frac{5}{3 x-3}$ | | Definition of negative exponents |

The domain of $y=f(g(x))$ is all real numbers except $x=1$, because $g(1)=0$ is not in the domain of f.
b. $g(f(x))=g\left(5 x^{-1}\right) \quad$ Substitute $5 x^{-1}$ for $f(x)$.

$$
\begin{array}{ll}
=3\left(5 x^{-1}\right)-3 & \\
=15 x^{-1}-3 & \text { Replace } x \text { with } 5 x^{-1} \text { in } g(x) . \\
=\frac{15}{x}-3 &
\end{array}
$$

The domain of $y=g(f(x))$ is all real numbers except $x=0$, because 0 is not in the domain of f.

c. | $f(f(x))$ | $=f\left(5 x^{-1}\right)$ | | Substitute $5 x^{-1}$ for $f(x)$. |
| ---: | :--- | ---: | :--- |
| | $=5\left(5 x^{-1}\right)^{-1}$ | | Replace x with $5 x^{-1}$ in $f(x)$. |
| | $=5\left(5^{-1} x^{1}\right)$ | | Use properties of exponents. |
| | $=5\left(\frac{1}{5} x\right)$ | | Definition of negative exponents |
| | $=x$ | | Multiply. |

The domain of $y=f(f(x))$ is all real numbers except $x=0$, because 0 is not in the domain of f.

SELF-ASSESSMENT 1 Ido not undestand. 2 ICan do it with help. 3 Ican do oit on my own. 4 Ican teach someone else.
Let $f(x)=2 x^{-1}, g(x)=4 x-3$, and $h(x)=0.5 x+2$. Perform the indicated composition and state the domain.
6. $f(g(x))$
7. $g(f(x))$
8. $f(f(x))$
9. $h(h(x))$
10. MP REASONING Let f and g be linear functions. Is $y=f(g(x))$ a linear function? Explain your reasoning.

Solving Real-Life Problems

EXAMPLE 3 Modeling Real Life

The function $C(m)=15-10.5 m$ approximates the temperature (in degrees Celsius) at an altitude of m miles. The diagram shows the altitude (in miles) of an airplane t minutes after taking off, where $0 \leq t \leq 30$. Find $C(m(t))$. Evaluate $C(m(30))$ and explain what it represents.

SOLUTION

The composition $C(m(t))$ represents the temperature at the airplane's altitude t minutes after taking off. Find $C(m(t))$.

$$
\begin{aligned}
C(m(t)) & =C(0.2 t) & & \text { Substitute } 0.2 t \text { for } m(t) . \\
& =15-10.5(0.2 t) & & \text { Replace } m \text { with } 0.2 t \text { in } C(m) . \\
& =15-2.1 t & & \text { Multiply. }
\end{aligned}
$$

Evaluate $C(m(30))$.

$$
\begin{aligned}
C(m(30)) & =15-2.1(30) & & \text { Substitute } 30 \text { for } t . \\
& =15-63 & & \text { Multiply. } \\
& =-48 & & \text { Subtract. }
\end{aligned}
$$

So, $C(m(30))=-48$ indicates that after 30 minutes, the airplane is at an altitude that has a temperature of about $-48^{\circ} \mathrm{C}$.

SELF-ASSESSMENT 1 Ido not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

11. The function $C(x)=50 x+100$ represents the cost (in dollars) of producing x bee hive boxes. The number of bee hive boxes produced in t hours is represented by $x(t)=6 t$.
a. Find $C(x(t))$.
b. Evaluate $C(x(8))$ and explain what it represents.
12. A worker earning an hourly wage changes positions within a company. The new position comes with a 20% raise in hourly wage. The worker also receives a $\$ 2$ increase in hourly wage. Use composition of functions to write a function that represents the worker's new hourly wage when the 20% raise is applied before the \$2 raise.

In Exercises 1-8, let $f(x)=\sqrt{x}+1, g(x)=2 x-5$, and $h(x)=3 x^{2}-3$. Find the indicated value. \triangle Example 1

1. $f(g(4))$
2. $g(f(0))$
3. $g(h(-2))$
4. $h(g(-1))$
5. $h(f(10))$
6. $f(h(-3))$
7. $g(g(-2.5))$
8. $h\left(h\left(\frac{2}{3}\right)\right)$

In Exercises 9-20, find (a) $f(g(x))$, (b) $g(f(x))$, and (c) $f(f(x))$. State the domain of each composition. D Example 2
9. $f(x)=-5 x, g(x)=x+6$
10. $f(x)=x-9, g(x)=|x+2|$
11. $f(x)=2 x^{2}, g(x)=x-1$
12. $f(x)=x^{2}+7, g(x)=2 x+5$
13. $f(x)=3 x^{-1}, g(x)=4 x+8$
14. $f(x)=10 x^{-1}, g(x)=x^{2}-9$
15. $f(x)=3 x-7, g(x)=\sqrt{x+7}$
16. $f(x)=4 x+2, g(x)=\sqrt{x-6}$
17. $f(x)=-x+11, g(x)=\sqrt[3]{x-3}$
18. $f(x)=-6 x-5, g(x)=\sqrt[3]{x+4}$
19. $f(x)=2 x+1, g(x)=x^{2}+6 x-10$
20. $f(x)=3 x-1, g(x)=x^{3}-2 x+4$

ERROR ANALYSIS In Exercises 21 and 22, let $f(x)=x^{2}-3$ and $g(x)=4 x$. Describe and correct the error in performing the composition.
21.

$$
\begin{aligned}
f(g(x)) & =\left(x^{2}-3\right)(4 x) \\
& =4 x^{3}-12 x
\end{aligned}
$$

22.

$$
\begin{aligned}
g(f(x)) & =g\left(x^{2}-3\right) \\
& =4 x^{2}-3
\end{aligned}
$$

23. MODELING REAL LIFE The function $C(g)=2.75 g$ represents the cost (in dollars) of g gallons of gasoline at a gas station. The function $g(m)=0.04 m$ approximates the number of gallons of gasoline a vehicle uses to travel m miles. \square Example 3
a. Find $C(g(m))$. Interpret the coefficient.
b. Evaluate $C(g(100))$ and explain what it represents.
24. MODELING REAL LIFE The function $p(d)=0.03 d+1$ approximates the pressure (in atmospheres) at a depth of d feet below sea level. The function $d(t)=60 t$ represents the depth (in feet) of a diver t minutes after beginning a descent from sea level, where $0 \leq t \leq 2$.
a. Find $p(d(t))$. Interpret the terms and coefficient.
b. Evaluate $p(d(1.5))$ and explain what it represents.
25. MP REASONING The table shows the inputs and outputs of two functions f and g. Use the table to find each value.

\boldsymbol{x}	-2	-1	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x})$	7	5	3	2	0	-2
$\boldsymbol{g}(\boldsymbol{x})$	1	-2	-1	5	2	0

a. $f(g(-1))$
b. $g(f(2))$
c. $f(f(0))$
d. $g(g(-2))$
26. HOW DO YOU SEE IT?

Use the graphs of f and g to find each value.

a. $f(g(6))$
b. $g(f(-1))$
c. $f(f(2))$
d. $g(g(3))$
27. MP REASONING Functions f and g consist only of the ordered pairs shown. Find the ordered pairs for $y=f(g(x))$.
$f:(-12,11),(-4,9),(1,3),(2,-4),(6,-5)$
$g:(-10,6),(-3,1),(0,-4),(5,2),(8,-12)$
28. COLLEGE PREP Let $f(x)=x^{2}+1$ and $g(x)=3 x+1$. What is $f(f(x))-g(f(x))$?
(A) $x^{2}-3 x$
(B) $x^{4}-x^{2}-2$
(C) $x^{4}-7 x^{2}-6 x$
(D) $x^{4}-3 x^{3}+x^{2}-3 x$
29. CONNECTING CONCEPTS The radius of a circular region increases at a rate of 2 inches per minute. Use composition of functions to write a function that represents the area A (in square inches) of the region after t minutes.
30. MP PROBLEM SOLVING You have two coupons for a store, one for $\$ 10$ off your entire purchase and another for 20% off your entire purchase. Both coupons can be used on the same purchase. Which order of discounts results in a lesser total? Use composition of functions to justify your answer.

MP STRUCTURE In Exercises 31-34, find functions f and g such that $f(g(x))=h(x), f(x) \neq x$, and $g(x) \neq x$.
31. $h(x)=\frac{1}{2} x+6$
32. $h(x)=|2 x+9|$
33. $h(x)=\sqrt[3]{x+2}$
34. $h(x)=\frac{4}{3 x^{2}+7}$
35. MP LOGIC Complete the table using the following information.

- f and g are linear functions.
- $f(g(1))=6.5$
- $g(f(2))=-5$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
1		
2		
4		-5
7	6.5	

36. THOUGHT PROVOKING

Write two different nonlinear functions f and g such that $f(g(x))=x$ and $g(f(x))=x$.

In Exercises 37-40, let $f(x)=3 x+5, g(x)=x^{2}$, and $h(x)=-2 x-1$. Perform the indicated composition.
37. $f(g(h(x)))$
38. $h(g(f(x)))$
39. $f(f(f(x)))$
40. $g(h(g(x)))$
41. DIG DEEPER Show that the function $f(x)=\frac{1}{3} \sqrt{x-2}+3$ is a composition, in some order, of functions g, h, p, and q.
$g(x)=\frac{1}{3} x$
$h(x)=x-2$
$p(x)=x+9$
$q(x)=\sqrt{x}$

REVIEW \& REFRESH

In Exercises 42 and 43, solve the inequality.
42. $5 \sqrt{x}-3<17$
43. $\sqrt[3]{x+1}+4 \geq-2$
44. Describe the x-values for which (a) f is increasing or decreasing, (b) $f(x)>0$, and (c) $f(x)<0$.

In Exercises 45 and 46, let $f(x)=-x+4$ and $g(x)=\frac{2 x-1}{3}$. Find the indicated value.
45. $f(g(5))$
46. $g(f(-4))$
47. Let g be a horizontal stretch by a factor of 2 , followed by a translation 3 units up of the graph of $f(x)=\sqrt{4 x}$. Write a rule for g.

In Exercises 48 and 49, solve the system using any method. Explain your choice of method.
48. $2 x^{2}+4 x-y=-5$
49. $x^{2}-3 x-y=4$
$2 x+y=1$
$-x^{2}+7 x+y=10$
50. MODELING REAL LIFE From 2012 to 2017, the United States population (in millions) ages 5 and over can be modeled by
$P(t)=0.0208 t^{4}-0.203 t^{3}+0.56 t^{2}+2.1 t+289$
and the number of people in that group that speak a language other than English at home can be modeled by
$S(t)=0.0037 t^{3}-0.042 t^{2}+1.08 t+59.4$
where t is the number of years since 2012. Find $(P-S)(t)$. Explain what $(P-S)(t)$ represents.
51. Find the volume of the cone. Round your answer to the nearest tenth.

