GO DIGITAL

Properties of Rational Exponents and Radicals

equals the product of the square roots of the factors.

Learning Target Simplify radical expressions.

Success Criteria

5.2

- I can simplify radical expressions with rational exponents.
- I can explain when radical expressions are in simplest form.
- I can simplify variable expressions containing rational exponents and radicals.

EXPLORE IT Reviewing Properties of Exponents

Work with a partner.

Math Practice

Use Technology to Explore How can you use technology to help you determine the values of *n* in part (d)? $\sqrt{64x^2} = \sqrt{64} \cdot \sqrt{x^2}$ Product Property of Square Roots = 8x Simplify.

a. The Product Property of Square Roots states that the square root of a product

Describe the behavior of the graphs of $y = \sqrt{64x^2}$ and y = 8x. What do you notice? Use technology to check your graphs and explain the results.

b. You can extend the Product Property of Square Roots to other radicals, such as cube roots.

 $\sqrt[3]{64x^3} = \sqrt[3]{64} \cdot \sqrt[3]{x^3}$ Product Property of Cube Roots = 4x Simplify.

Describe the behavior of the graphs of $y = \sqrt[3]{64x^3}$ and y = 4x. What do you notice? Use technology to check your graphs and explain the results.

- **c.** How can you change the function y = 8x so that it coincides with the graph of $y = \sqrt{64x^2}$ for all values of *x*? Explain your reasoning.
- **d.** Determine the values of *n* for which $\sqrt[n]{x^n} = x$ and $\sqrt[n]{x^n} = |x|$.

5.2

Vocabulary

simplest form of a radical, p. 239 like radicals, p. 240

COMMON ERROR

When you multiply powers, do not multiply the exponents, add them. For example, $3^2 \cdot 3^5 = 3^7$, not 3^{10} .

Az

VOCAB

The properties of integer exponents can also be applied to rational exponents.

KEY IDEA

Properties of Rational Exponents

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers, such that the quantities in each property are real numbers.

Property Name	Definition	Example
Product of Powers	$a^m \bullet a^n = a^{m+n}$	$5^{1/2} \cdot 5^{3/2} = 5^{(1/2 + 3/2)} = 5^2 = 25$
Power of a Power	$(a^m)^n = a^{mn}$	$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$
Power of a Product	$(ab)^m = a^m b^m$	$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$
Negative Exponent	$a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$
Zero Exponent	$a^0 = 1, a \neq 0$	$213^0 = 1$
Quotient of Powers	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

WORDS AND MATH

In everyday life, a property of an object or idea is a quality or attribute of it. A mathematical property describes attributes of numbers and expressions.

SELF-ASSESSMENT

1. $2^{3/4} \cdot 2^{1/2}$

Simplify the expression.

EXAMPLE 1

Using Properties of Exponents

Use the properties of rational exponents to simplify each expression.

a. $7^{1/4} \cdot 7^{1/2} = 7^{(1/4 + 1/2)} = 7^{3/4}$	Product of Powers Property
b. $(6^{1/2} \cdot 4^{1/3})^2 = (6^{1/2})^2 \cdot (4^{1/3})^2$	Power of a Product Property
$= 6^{(1/2 \cdot 2)} \cdot 4^{(1/3 \cdot 2)}$	Power of a Power Property
$= 6 \cdot 4^{2/3}$	Simplify.
c. $(4^5 \cdot 3^5)^{-1/5} = [(4 \cdot 3)^5]^{-1/5}$	Power of a Product Property
$=(12^5)^{-1/5}$	Multiply.
$= 12^{[5 \cdot (-1/5)]}$	Power of a Power Property
$= 12^{-1}$	Simplify.
$=\frac{1}{12}$	Definition of negative exponent
d. $\frac{5}{5^{1/3}} = \frac{5^1}{5^{1/3}} = 5^{(1-1/3)} = 5^{2/3}$	Quotient of Powers Property
$\mathbf{e.} \ \left(\frac{42^{1/3}}{6^{1/3}}\right)^2 = \left[\left(\frac{42}{6}\right)^{1/3}\right]^2$	Power of a Quotient Property
$=(7^{1/3})^2$	Divide.
$= 7^{2/3}$	Power of a Power Property
I do not understand. 2 I can do it with help. 3	I can do it on my own. 4 I can teach someone else.
2. $\frac{3}{3^{1/4}}$ 3. $\left(\frac{20^{1/2}}{5^{1/2}}\right)^3$	4. $(5^{1/3} \cdot 7^{1/4})^3$

Simplifying Radical Expressions

The Power of a Product and Power of a Quotient properties can be

expressed using radical notation when $m = \frac{1}{n}$ for some integer *n* greater than 1.

KEY IDEA

Properties of Radicals

Let a and b be real numbers such that the indicated roots are real numbers, and let *n* be an integer greater than 1.

Property Name	Definition	Example
Product Property	$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$
Quotient Property	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$	$\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$

EXAMPLE 2

b.

Using Properties of Radicals

Use the properties of radicals to simplify each expression.

a. $\sqrt[3]{12} \cdot \sqrt[3]{18} = \sqrt[3]{12 \cdot 18} = \sqrt[3]{216} = 6$ **Product Property of Radicals**

$$\frac{\sqrt[4]{80}}{\sqrt[4]{5}} = \sqrt[4]{\frac{80}{5}} = \sqrt[4]{16} = 2$$
 Quotient P

Property of Radicals

An expression involving a radical with index *n* is in **simplest form** when these three conditions are met.

- No radicands have perfect *n*th powers as factors other than 1.
- No radicands contain fractions.
- No radicals appear in the denominator of a fraction.

To meet the last two conditions, rationalize the denominator by multiplying the expression by an appropriate form of 1 that eliminates the radical from the denominator.

EXAMPLE 3

Writing Radicals in Simplest Form

Write the expressions (a) $\sqrt[3]{135}$ and (b) $\frac{\sqrt[3]{7}}{\sqrt[5]{8}}$ in simplest form.

SOLUTION

a.
$$\sqrt[3]{135} = \sqrt[3]{27} \cdot 5$$

 $= \sqrt[3]{27} \cdot \sqrt[3]{5}$
 $= 3\sqrt[3]{5}$
b. $\frac{\sqrt[5]{7}}{\sqrt[5]{8}} = \frac{\sqrt[5]{7}}{\sqrt[5]{8}} \cdot \frac{\sqrt[5]{4}}{\sqrt[5]{4}}$
Factor out perfect cube.
Product Property of Rad
Simplify.
Make the radicand in th

 $=\frac{\sqrt[7]{28}}{\sqrt[5]{32}}$

 $=\frac{\sqrt[5]{28}}{2}$

roduct Property of Radicals implify.

Nake the radicand in the denominator a perfect fifth power.

Product Property of Radicals

Simplify.

WATCH

For a denominator that is a sum or difference involving square roots, multiply both the numerator and denominator by the *conjugate* of the denominator. The expressions $a\sqrt{b} + c\sqrt{d}$ and $a\sqrt{b} - c\sqrt{d}$ are conjugates of each other, where *a*, *b*, *c*, and *d* are rational numbers.

Writing a Radical Expression in Simplest Form

Write $\frac{1}{5 + \sqrt{3}}$ in simplest form.	
SOLUTION	
$\frac{1}{5+\sqrt{3}} = \frac{1}{5+\sqrt{3}} \cdot \frac{5-\sqrt{3}}{5-\sqrt{3}}$	The conjugate of 5 + $\sqrt{3}$ is 5 - $\sqrt{3}$.
$=\frac{1(5-\sqrt{3})}{5^2-(\sqrt{3})^2}$	Sum and Difference Pattern
$=\frac{5-\sqrt{3}}{22}$	Simplify.

Radical expressions with the same index and radicand are **like radicals**. To add or subtract like radicals, use the Distributive Property.

EXAMPLE 5 Adding and Subtracting Like Radicals and Roots

Simplifying Variable Expressions

The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be positive, negative, or zero, sometimes absolute value is needed when simplifying a variable expression.

	Rule	Example
When <i>n</i> is odd	$\sqrt[n]{x^n} = x$	$\sqrt[7]{5^7} = 5$ and $\sqrt[7]{(-5)^7} = -5$
When <i>n</i> is even	$\sqrt[n]{x^n} = x $	$\sqrt[4]{3^4} = 3$ and $\sqrt[4]{(-3)^4} = 3$

Absolute value is not needed when all variables are assumed to be positive.

EXAMPLE 6

Simplifying Variable Expressions

WATCH,

WATCH

Simplify each expression.

a.
$$\sqrt[3]{64y^6}$$

->

b. $\sqrt[4]{\frac{x^4}{v^8}}$

 $4y^2$

SOLUTION

a.
$$\sqrt[3]{64y^6} = \sqrt[3]{4^3(y^2)^3} = \sqrt[3]{4^3} \cdot \sqrt[3]{(y^2)^3} =$$

b. $\sqrt[4]{\frac{x^4}{y^8}} = \frac{\sqrt[4]{x^4}}{\sqrt[4]{y^8}} = \frac{\sqrt[4]{x^4}}{\sqrt[4]{(y^2)^4}} = \frac{|x|}{y^2}$

Writing Variable Expressions in Simplest Form

Write each expression in simplest form. Assume all variables are positive.

b. $\frac{x}{\sqrt[3]{y^8}}$

a. $\sqrt[4]{16a^7b^{11}c^4}$

ิล

SOLUTION

 $=\frac{x\sqrt[3]{y}}{\sqrt[3]{y^9}}$

 $=\frac{x\sqrt[3]{y}}{y^3}$

a.
$$\sqrt[n]{16a^7b^{11}c^4} = \sqrt[n]{16a^4a^3b^8b^3c^4}$$

= $\sqrt[n]{16a^4b^8c^4} \cdot \sqrt[n]{a^3b^3}$
= $2ab^2c\sqrt[n]{a^3b^3}$
b. $\frac{x}{\sqrt[n]{y^8}} = \frac{x}{\sqrt[n]{y^8}} \cdot \frac{\sqrt[n]{y}}{\sqrt[n]{y}}$

Factor out perfect fourth powers. **Product Property of Radicals**

Simplify.

Make denominator a perfect cube.

Product Property of Radicals

Simplify.

COMMON ERROR

STUDY TIP

always positive.

You do not need to

take the absolute value of y^2 because it is

You must multiply both the numerator and denominator of the fraction by $\sqrt[3]{y}$ so that the value of the fraction does not change.

EXAMPLE 8 Adding and Subtracting Variable Expressions

Perform each indicated operation. Assume all variables are positive. WATCH **b.** $12\sqrt[3]{2z^5} - z\sqrt[3]{54z^2}$ **a.** $5\sqrt{y} + 6\sqrt{y}$

SOLUTION

a. $5\sqrt{y} + 6\sqrt{y} = (5+6)\sqrt{y} = 11\sqrt{y}$ **b.** $12\sqrt[3]{2z^5} - z\sqrt[3]{54z^2} = 12z\sqrt[3]{2z^2} - 3z\sqrt[3]{2z^2} = (12z - 3z)\sqrt[3]{2z^2} = 9z\sqrt[3]{2z^2}$

c. $\frac{14xy^{1/3}}{2x^{3/4}z^{-6}} = 7x^{(1-3/4)}y^{1/3}z^{-(-6)} = 7x^{1/4}y^{1/3}z^{6}$

Simplify the expression. Assume all variables are positive.

15. $\sqrt[5]{\frac{x^{10}}{v^5}}$

14. $\sqrt[6]{36p^6q^8r^{10}}$

16. $\frac{6xy^{3/4}}{3x^{1/2}y^{1/2}}$

17. $\sqrt{9w^5} - w\sqrt{w^3}$

5.2 Practice with CalcChat® AND CalcView®

In Exercises 1–10, use the properties of rational exponents to simplify the expression. *Example 1*

1.	$(9^2)^{1/3}$	2.	$(12^2)^{1/4}$
3.	$\frac{6}{6^{1/4}}$	4.	$\frac{7}{7^{1/3}}$
5.	$\left(\frac{8^4}{10^4}\right)^{-1/4}$	6.	$\left(\frac{9^3}{6^3}\right)^{-1/3}$
7.	$(3^{-2/3} \cdot 3^{1/3})^{-1}$	8.	$(5^{1/2} \cdot 5^{-3/2})^{-1/4}$
9.	$\frac{2^{2/3} \cdot 16^{2/3}}{4^{2/3}}$	10.	$\frac{49^{3/8} \cdot 49^{7/8}}{7^{5/4}}$

In Exercises 11–18, use the properties of radicals to simplify the expression. *Example 2*

11.	$\sqrt{2}$ • $\sqrt{72}$	12.	$\sqrt[3]{16} \cdot \sqrt[3]{32}$
13.	$\sqrt[4]{5} \cdot \sqrt[4]{125}$	14.	$\sqrt[4]{2} \cdot \sqrt[4]{128}$
15.	$\frac{\sqrt[5]{486}}{\sqrt[5]{2}}$	16.	$\frac{\sqrt{2}}{\sqrt{32}}$
17.	$\frac{\sqrt[3]{6}\cdot\sqrt[3]{72}}{\sqrt[3]{2}}$	18.	$\frac{\sqrt[3]{3}\cdot\sqrt[3]{18}}{\sqrt[6]{2}\cdot\sqrt[6]{2}}$

In Exercises 19–26, write the expression in simplest form. *Example 3*

35.	$9\sqrt[3]{11} + 3\sqrt[3]{11}$	36.	$8\sqrt[6]{5} - 12\sqrt[6]{5}$
37.	$3(14^{1/4}) + 9(14^{1/4})$	38.	$13(8^{3/4}) - 4(8^{3/4})$
39.	$5\sqrt{12} - 19\sqrt{3}$	40.	$27\sqrt{6} + 7\sqrt{150}$
41.	$\sqrt[5]{224} + 3\sqrt[5]{7}$	42.	$7\sqrt[3]{2} - \sqrt[3]{128}$
43.	$5(24^{1/3}) - 4(3^{1/3})$	44.	$5^{1/4} + 6(405^{1/4})$

In Exercises 45–50, simplify the expression. ► *Example 6*

ERROR ANALYSIS In Exercises 51 and 52, describe and correct the error in simplifying the expression.

51.

$$3\sqrt[3]{12} + 5\sqrt[3]{12} = (3+5)\sqrt[3]{24} = 8\sqrt[3]{24} = 8\sqrt[3]{24} = 8\sqrt[3]{8} \cdot 3 = 8 \cdot 2\sqrt[3]{3} = 8 \cdot 2\sqrt[3]{3} = 16\sqrt[3]{3}$$

53. OPEN-ENDED Write two variable expressions involving radicals, one that needs absolute value when simplifying and one that does not need absolute value. Justify your answers.

GO DIGITAL

54. COLLEGE PREP When each expression is simplified and written in radical form, which expressions are like radicals?

($(5^{2/9})^{3/2}$	B $\frac{5^3}{5^{8/3}}$
(C) $\sqrt[3]{625}$	D $\sqrt[3]{960} - \sqrt[3]{120}$
(E) $\sqrt[3]{40} + 3\sqrt[3]{320}$	(F) $7\sqrt[4]{80} - 2\sqrt[4]{405}$

In Exercises 55–62, write the expression in simplest form. Assume all variables are positive. *Example 7*

61. $\frac{18w^{1/3}v^{5/4}}{27w^{4/3}v^{1/2}}$ **62.** $\frac{7x^{3/4}y^{5/2}}{56x^{-1/2}y^{1/4}z^{-2/3}}$

In Exercises 63–68, perform the indicated operation. Assume all variables are positive. ▷ *Example 8*

63.	$12\sqrt[3]{y} + 9\sqrt[3]{y}$	64.	$11\sqrt{2z} - 5\sqrt{2z}$
65.	$3x^{7/2} - 5x^{7/2}$	66.	$7m^{7/3} + 3m^{7/3}$
67.	$\sqrt[4]{16w^{10}} + 2w\sqrt[4]{w^6}$		
68.	$\sqrt[3]{32p^{10}} - 9p^2\sqrt[3]{4p^4}$		

CONNECTING CONCEPTS In Exercises 69 and 70, find simplified expressions for the perimeter and area of the given figure.

71. MODELING REAL LIFE The optimum diameter *d* (in millimeters) of the pinhole in a pinhole camera can be modeled by $d = 1.9[(5.5 \times 10^{-4})\ell]^{1/2}$, where ℓ is the length (in millimeters) of the camera box. Find the optimum pinhole diameter for a camera box with a length of 10 centimeters.

72. MODELING REAL LIFE The apparent magnitude of a star is a number that indicates how faint the star is in relation

to other stars. The expression $\frac{2.512^{m_1}}{2.512^{m_2}}$ tells how many times fainter a star with apparent magnitude m_1 is than

times fainter a star with apparent magnitude m_1 is than a star with apparent magnitude m_2 .

Star	Apparent magnitude	Constellation	
Vega	0.03	Lyra	
Altair	0.77	Aquila	
Deneb	1.25	Cygnus	

- **a.** How many times fainter is Altair than Vega?
- **b.** How many times fainter is Deneb than Altair?
- c. How many times fainter is Deneb than Vega?

- **73. MAKING AN ARGUMENT** Your friend claims it is not possible to simplify the expression $7\sqrt{11} 9\sqrt{44}$ because it does not contain like radicals. Is your friend correct? Explain your reasoning.
- 74. **MP PROBLEM SOLVING** The surface area *S* (in square centimeters) of a mammal can be modeled by $S = km^{2/3}$, where *m* is the mass (in grams) of the mammal and *k* is a constant. The table shows the values of *k* for different mammals.

Mammal	Rabbit	Human	Bat
Value of <i>k</i>	9.75	11.0	57.5

- **a.** Find the surface area of a bat whose mass is 32 grams.
- **b.** Find the surface area of a rabbit whose mass is 3.4 kilograms $(3.4 \times 10^3 \text{ grams})$.
- **c.** Which mammal has the greatest mass per square centimeter of surface area, the bat in part (a), the rabbit in part (b), or a human whose mass is 59 kilograms?
- **d.** Rewrite the formula so that one side is $\frac{m}{S}$. Use this formula to justify your answer in part (c).

75. CONNECTING CONCEPTS

Find a simplified radical expression for the perimeter of the triangle inscribed in the square. Is the inscribed triangle a right triangle?

76. HOW DO YOU SEE IT?

Without finding points, match the functions $f(x) = \sqrt{x^2}$ and $g(x) = \sqrt[3]{x^3}$ with their graphs. Explain your reasoning.

REVIEW & REFRESH

In Exercises 80–83, write a rule for g. Describe the graph of g as a transformation of the graph of f.

- **80.** $f(x) = x^4 3x^2 2x$, g(x) = -f(x)
- **81.** $f(x) = x^3 x$, g(x) = f(x) 3
- **82.** $f(x) = x^3 4$, g(x) = f(x 2)
- **83.** $f(x) = x^4 + 2x^3 4x^2$, g(x) = f(2x)

In Exercises 84 and 85, identify the focus, directrix, and axis of symmetry of the parabola. Then graph the equation.

- **84.** $y = 2x^2$ **85.** $y^2 = -x$
- **86.** Write the cubic function whose graph is shown.

87. Is $f(x) = 4x^3 + 2^x - 5x$ a polynomial function? Explain.

77. REWRITING A FORMULA You fill two round balloons with water. One balloon contains twice as much water as the other balloon.

- **a.** Solve the formula for the volume of a sphere, $V = \frac{4}{3}\pi r^3$, for *r*.
- **b.** Use your result from part (a) and the formula for the surface area of a sphere, $S = 4\pi r^2$, to show that $S = (4\pi)^{1/3} (3V)^{2/3}$.
- **c.** Compare the surface areas of the two water balloons using the formula in part (b).
- **78. THOUGHT PROVOKING**

Determine whether the expressions $(x^2)^{1/6}$ and $(x^{1/6})^2$ are equivalent for all values of *x*. Explain your reasoning.

79. DRAWING CONCLUSIONS Substitute different combinations of odd and even positive integers for *m* and *n* in the expression $\sqrt[n]{x^m}$. When you cannot assume *x* is positive, explain when absolute value is needed in simplifying the expression.

88. Determine whether the sequence is *arithmetic*, *geometric*, or *neither*. Explain your reasoning.

4, 12, 36, 108, . . .

In Exercises 89–92, simplify the expression.

- **89.** $\left(\frac{48^{1/4}}{6^{1/4}}\right)^6$ **90.** $\sqrt[4]{3} \cdot \sqrt[4]{432}$
- **91.** $\frac{1}{3+\sqrt{2}}$ **92.** $\sqrt[3]{16} 5\sqrt[3]{2}$

In Exercises 93 and 94, determine whether the function is *even*, *odd*, or *neither*.

93.
$$f(x) = 3x^4 - 5$$
 94. $g(x) = x^5 + 2x - 3$

In Exercises 95 and 96, evaluate the expression without using technology.

- **95.** 16^{3/4} **96.** 125^{2/3}
- **97. MODELING REAL LIFE** While standing on an apartment balcony, you drop a pair of sunglasses from a height of 25 feet.
 - **a.** Write a function *h* that gives the height (in feet) of the pair of sunglasses after *t* seconds. How long do the sunglasses take to hit the ground?
 - **b.** Find and interpret h(0.25) h(1).