Modeling with Polynomial Functions

GO DIGITAL

Learning Target Write polynomial functions.
Success Criteria

- I can write a polynomial function given a graph or a set of points.
- I can write a polynomial function using finite differences.
- I can use technology to find a polynomial model for a set of data.

EXPLORE IT! Modeling Real-Life Data

Work with a partner. The data show the prices per share y (in dollars) for Amazon.com, Inc. stock t years after 2000.

\boldsymbol{t}	0	1	2	3	4	5	6
\boldsymbol{y}	81.50	15.81	10.93	19.19	52.76	44.95	47.47

\boldsymbol{t}	7	8	9	10	11	12	13
\boldsymbol{y}	38.68	95.35	51.35	136.25	181.37	175.89	256.08

\boldsymbol{t}	14	15	16	17	18	19
\boldsymbol{y}	398.80	312.58	656.29	757.92	1172.00	1465.20

a. Use technology to make a scatter plot of the data.

Describe the scatter plot.
b. Use technology to find a linear model and a quadratic model to represent the data. Is either model a good fit? How can you tell?
c. Is there another type of model you can use that better represents the data in the table? Use technology to find the model and explain why it is a better fit. Compare your results with your classmates.
d. Can you use the model you found in part (c) to make predictions about the share prices for Amazon.com, Inc. for future years? Explain your reasoning.
e. How can you tell when a model fits a
 set of data exactly?

Writing a Polynomial Function for a Set of Points

You know that two points determine a line and three points not on a line determine a parabola. In Example 1, you will see that four points not on a line or a parabola determine the graph of a cubic function.

EXAMPLE 1 Writing a Cubic Function

Write the cubic function whose graph is shown.

SOLUTION

Step 1 Use the three x-intercepts to write the function in intercept form.

$$
f(x)=a(x+4)(x-1)(x-3)
$$

Step 2 Find the value of a by substituting the coordinates of the point $(0,-6)$.

$$
f(x)=a(x-p)(x-q)(x-r)
$$

where $a \neq 0$, and the x-intercepts of the graph of f are p, q, and r.

$$
\begin{aligned}
-6 & =a(0+4)(0-1)(0-3) \\
-6 & =12 a \\
-\frac{1}{2} & =a
\end{aligned}
$$

The function is $f(x)=-\frac{1}{2}(x+4)(x-1)(x-3)$.

Check

Check the end behavior of f. The degree of f is odd and $a<0$. So, $f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$, which matches the graph.

SELF-ASSESSMENT 1 I do not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

Write a cubic function whose graph passes through the given points.

1. $(-4,0),(0,10),(2,0),(5,0)$
2. $(-1,0),(0,-12),(2,0),(3,0)$

Finite Differences

When the x-values in a data set are equally spaced, the differences of consecutive y-values are called finite differences. Recall from Section 2.4 that the first and second differences of $y=x^{2}$ are:

Notice that $y=x^{2}$ has degree two and that the second differences are constant and nonzero. This illustrates the first of the two properties of finite differences shown on the next page.

KEY IDEA

Properties of Finite Differences

1. If a polynomial function $y=f(x)$ has degree n, then the nth differences of function values for equally-spaced x-values are nonzero and constant.
2. Conversely, if the nth differences of equally-spaced data are nonzero and constant, then the data can be represented by a polynomial function of degree n.

The second property of finite differences allows you to write a polynomial function that models a set of equally-spaced data.

EXAMPLE 2 Writing a Function Using Finite Differences

Use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.

\boldsymbol{x}	1	2	3	4	5	6	7
$\boldsymbol{f}(\boldsymbol{x})$	1	4	10	20	35	56	84

SOLUTION

Step 1 Write the function values. Find the first differences by subtracting consecutive values. Then find the second differences by subtracting consecutive first differences. Continue until you obtain differences that are nonzero and constant.

Write function values for equally-spaced x-values.
First differences
Second differences
Third differences
Because the third differences are nonzero and constant, you can model the data exactly with a cubic function.

Step 2 Use technology to enter the data from the table. Then use cubic regression to obtain a polynomial function.
Because $0.166667 \approx \frac{1}{6}, 0.5=\frac{1}{2}$, and $0.333333 \approx \frac{1}{3}$, a cubic function that fits the data exactly is

$$
\begin{array}{ll}
\begin{array}{ll}
\text { DARAMETERS } & y=a x^{3}+b x^{2}+c x+d \\
a=0.166667 & b=0.5 \\
c=0.333333 & d=0 \\
\text { STATISTICS } & \\
R^{2}=1 &
\end{array} \\
\end{array}
$$

$$
f(x)=\frac{1}{6} x^{3}+\frac{1}{2} x^{2}+\frac{1}{3} x .
$$

SELF-ASSESSMENT 1 I do not understand.

2 I can do it with help.
3 I can do it on my own.
4 I can teach someone else.
3. WRITING Explain how you know when a set of data can be modeled by a polynomial function of degree n.
4. Use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.

\boldsymbol{x}	-3	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	6	15	22	21	6	-29

Finding Models Using Technology

In Examples 1 and 2, you found a cubic model that exactly fits a set of data. In many real-life situations, you cannot find models to fit data exactly. Despite this limitation, you can still use technology to approximate the data with a polynomial model.

EXAMPLE 3 Modeling Real Life $\underset{\text { WATCH }}{8}$

On August 9, 2007, the bald eagle was removed from the federal list of threatened and endangered species.

The data show the numbers y of bald eagle nests counted in Ohio t years after 2000. Find a model for the data. Use the model to estimate the number of bald eagle nests in 2015.

\boldsymbol{t}	0	1	2	3	4	5	6
\boldsymbol{y}	63	73	79	88	108	125	150

\boldsymbol{t}	7	8	9	12	14	17
\boldsymbol{y}	164	184	215	213	200	221

SOLUTION

Step 1 Use technology to make a scatter plot of the data. The data suggest some type of polynomial model such as a cubic or quartic function.

Step 2 Use cubic and quartic regression. The coefficients can be rounded to obtain:

$$
\begin{array}{ll}
y=-0.052 t^{3}+0.62 t^{2}+13.6 t+55 & \text { Cubic model } \\
y=0.0202 t^{4}-0.734 t^{3}+7.79 t^{2}-11.0 t+70 & \text { Quartic model }
\end{array}
$$

$$
\begin{array}{ll}
\hline \triangle y=a x^{3}+b x^{2}+c x+d \\
\text { PARAMETERS } & \\
a=-0.0516199 & b=0.618239 \\
c=13.5523 & d=54.9467 \\
\text { STATISTICS } & \\
R^{2}=0.9569 &
\end{array}
$$

$$
\begin{array}{ll}
\begin{array}{|}
\text { 毋 } & y=a x^{4}+b x^{3}+c x^{2}+d x+f \\
\text { PARAMETERS } & \\
a=0.020226 & b=-0.733573 \\
c=7.79139 & d=-11.0265 \\
f=69.7095 & \\
\text { STATISTICS } & \\
R^{2}=0.9876 &
\end{array}
\end{array}
$$

Step 3 Graph the equations with the data and compare the models. The graph of the quartic model appears to be closer to the data points than the graph of the cubic model. So, a good model for the data is $y=0.0202 t^{4}-0.734 t^{3}+7.79 t^{2}-11.0 t+70$.

Step 4 Find y when $t=15$. It is about 206.
The number of bald eagle nests in 2015 was about 206.
5. Use technology to find a polynomial function that fits the data.
6. MP REASONING Use the cubic model in Example 3 to estimate the number of bald eagle nests in 2015. What do

x	1	2	3	4	5	6
y	5	13	17	11	11	56

In Exercises 1-4, write a cubic function whose graph passes through the given points. \triangle Example 1
1.

2.

3. $(-5,0),(1,0),(2,-2),(4,0)$
4. $(-6,0),(-3,0),(0,-9),(3,0)$

In Exercises 5-10, use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.

- Example 2

5.

\boldsymbol{x}	-6	-3	0	3	6	9
$\boldsymbol{f}(\boldsymbol{x})$	-2	15	-4	49	282	803

6.

\boldsymbol{x}	-1	0	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	-14	-5	-2	7	34	91

7. $(-4,-317),(-3,-37),(-2,21),(-1,7),(0,-1)$, $(1,3),(2,-47),(3,-289),(4,-933)$
8. $(-6,744),(-4,154),(-2,4),(0,-6),(2,16)$, $(4,154),(6,684),(8,2074),(10,4984)$
9. $(-2,968),(-1,422),(0,142),(1,26),(2,-4)$, $(3,-2),(4,2),(5,2),(6,16)$
10. $(1,0),(2,6),(3,2),(4,6),(5,12),(6,-10)$, $(7,-114),(8,-378),(9,-904)$
11. ERROR ANALYSIS Describe and correct the error in writing a cubic function whose graph passes through the given points.

$$
\begin{aligned}
(-6,0) & ,(1,0),(3,0),(0,54) \\
54 & =a(0-6)(0+1)(0+3) \\
54 & =-18 a \\
-3 & =a \\
f(x) & =-3(x-6)(x+1)(x+3)
\end{aligned}
$$

12. MAKING AN ARGUMENT Is it possible to determine the degree of a polynomial function given only the first differences? Explain your reasoning.
13. MODELING REAL LIFE The table shows the total U.S. biomass energy consumptions y (in trillions of British thermal units, or Btus) t years after 2000.
Find a model for the data. Use the model to estimate the total U.S. biomass energy consumption in 2017.
D Example 3

\boldsymbol{t}	0	1	2	3	4
\boldsymbol{y}	3008	2622	2701	2806	3008

\boldsymbol{t}	5	10	15	16	18
\boldsymbol{y}	3114	4506	4983	5020	5128

14. MODELING REAL LIFE The data in the table show the average speeds y (in miles per hour) of a pontoon boat for several different engine speeds x (in hundreds of revolutions per minute, or RPMs). Find a model for the data. Use the model to estimate the average speed of the pontoon boat when the engine speed is 2800 RPMs.

\boldsymbol{x}	10	20	25	30	45	55
\boldsymbol{y}	4.5	8.9	13.8	18.9	29.9	37.7

15. WRITING Explain why you cannot always use finite differences to find models for real-life data sets.

16. HOW DO YOU SEE IT?

The graph shows typical speeds y (in feet per second) of a space shuttle x seconds after it is launched.

a. Do the data appear to be best represented by a linear, quadratic, or cubic function? Explain.
b. Which nth differences should be constant for the function in part (a)? Explain.
17. ANALYZING RELATIONSHIPS The table shows the numbers of diagonals for polygons with n sides. Find a polynomial function that fits the data. Determine the number of diagonals in the decagon shown.

Sides, \boldsymbol{n}	3	4	5	6	7	8
Diagonals, \boldsymbol{d}	0	2	5	9	14	20

18. THOUGHT PROVOKING

Write a polynomial function that has constant fourth differences of -2 . Justify your answer.
19. MP PATTERNS The figures illustrate the first five pentagonal numbers, where the nth pentagonal number is equal to the number of dots in the nth figure. Determine the degree of the polynomial function that fits the data. Then find the 10 th pentagonal number.

20. MP STRUCTURE Substitute the expressions $z, z+1, z+2, \ldots, z+5$ for x in the function $f(x)=a x^{3}+b x^{2}+c x+d$ to generate six equally-spaced ordered pairs. Then show that the third differences are constant.

REVIEW \& REFRESH

In Exercises 21 and 22, use the graph to describe the degree and leading coefficient of f.
21.

22.

23. Let the graph of g be a translation 2 units left and 5 units down, followed by a reflection in the x-axis of the graph of $f(x)=(x+1)^{3}+3$. Write a rule for g.

In Exercises 24 and 25, solve the system using any method. Explain your choice of method.
24. $y=-2 x+5$
25. $x^{2}-3 x-y=-3$
$x^{2}+y^{2}=5$
$3 x^{2}-8 x-y=-5$

In Exercises 26 and 27, write a cubic function whose graph is shown.
26.

27.

28. MP REASONING Identify the focus and the directrix of $y=a x^{2}+c$ in terms of a and c.
29. Determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for the function $g(x)=-x^{5}-2 x^{4}+7 x^{2}-3 x+8$.
30. MODELING REAL LIFE The table shows the total numbers y of species added to the Endangered Species Act x years since 2010 . Use technology to find an equation of the line of best fit. Interpret the slope and y-intercept in this situation.

Years since $\mathbf{2 0 1 0 , \boldsymbol { x }}$	Species added, \boldsymbol{y}
0	54
1	73
2	124
3	213
4	279
5	310
6	384
7	395

In Exercises 31-34, solve the equation.
31. $x^{2}-6=30$
32. $5 x^{2}-38=187$
33. $2 x^{2}+3 x=-3 x^{2}+1$
34. $4 x-20=x^{2}$
35. Write an expression for the volume of the rectangular prism as a polynomial in standard form.

36. Graph $f(x)=-x^{4}+4 x^{3}-8 x$. Identify the x-intercepts and the points where the local maximums and local minimums occur. Determine the intervals for which the function is increasing or decreasing.

