Transformations of Polynomial Functions

Learning Target Describe and graph transformations of polynomial functions.
Success Criteria - I can describe transformations of polynomial functions.

- I can graph transformations of polynomial functions.
- I can write functions that represent transformations of polynomial functions.

EXPLORE IT ! Transforming Graphs of Cubic and Quartic Functions

Math Practice

Construct Arguments

Why does the range of f include negative numbers, but the range of g does not?

In parts (a)-(h), use technology to explore each function for several values of k, h, and a. How does the graph change when you change the values of k, h, and a ?
a. $y=f(x)+k$
b. $y=f(x-h)$
c. $y=a \cdot f(x)$
d. $y=f(a x)$
e. $y=g(x)+k$
f. $y=g(x-h)$
g. $y=a \cdot g(x)$
h. $y=g(a x)$

Describing Transformations of Polynomial Functions

You can transform graphs of polynomial functions in the same way you transformed graphs of linear functions, absolute value functions, and quadratic functions. Examples of transformations of the graph of $f(x)=x^{4}$ are shown below.

EXAMPLE 1 Translating a Polynomial Function

Describe the transformation of $f(x)=x^{3}$ represented by $g(x)=(x+5)^{3}+2$.
Then graph each function.

SOLUTION

Notice that the function is of the form $g(x)=(x-h)^{3}+k$. Rewrite the function to identify h and k.

$$
g(x)=(x-(-5))^{3}+2 \begin{array}{r}
2 \\
\uparrow
\end{array}
$$

Because $h=-5$ and $k=2$, the graph of g is a translation 5 units left and 2 units up
 of the graph of f.

SELF-ASSESSMENT
 1 I do not understand.
 2 I can do it with help.
 3 I can do it on my own.
 4 I can teach someone else.

Describe the transformation of f represented by g. Then graph each function.

1. $f(x)=x^{3}, g(x)=x^{3}-2$
2. $f(x)=x^{4}, g(x)=(x-3)^{4}-1$
3. MP STRUCTURE Describe the transformation of $f(x)=x^{4}$ represented by $g(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)$.

EXAMPLE 2 Transforming Polynomial Functions

Describe the transformation of f represented by g. Then graph each function.
a. $f(x)=x^{4}, g(x)=-\frac{1}{4} x^{4}$
b. $f(x)=x^{5}, g(x)=(2 x)^{5}-3$

SOLUTION

a. Notice that the function is of the form $g(x)=-a x^{4}$, where $a=\frac{1}{4}$.
$>$ So, the graph of g is a reflection in the x-axis and a vertical shrink by a factor of $\frac{1}{4}$ of the graph of f.

b. Notice that the function is of the form $g(x)=(a x)^{5}+k$, where $a=2$ and $k=-3$.

So, the graph of g is a horizontal shrink by a factor of $\frac{1}{2}$ and a translation 3 units down of the graph of f.

SELF-ASSESSMENT I do not understand.

2 I can do it with help.
3 I can do it on my own.
4 I can teach someone else.
4. Describe the transformation of $f(x)=x^{3}$ represented by $g(x)=4(x+2)^{3}$. Then graph each function.
5. VOCABULARY Describe how the vertex form of a quadratic function is similar to the form $f(x)=a(x-h)^{3}+k$ for a cubic function.

REMEMBER

Vertical stretches and shrinks do not change the x-intercept(s) of a graph. You can observe this using the graph in Example 3(b).

Writing Transformations of Polynomial Functions

EXAMPLE 3 Writing Transformed Polynomial Functions

Let $f(x)=x^{3}+x^{2}+1$. Write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.
a. $g(x)=f(-x)$
b. $g(x)=3 f(x)$

SOLUTION

a. $g(x)=f(-x)=(-x)^{3}+(-x)^{2}+1$
$=-x^{3}+x^{2}+1$
b. $g(x)=3 f(x)=3\left(x^{3}+x^{2}+1\right)$
$=3 x^{3}+3 x^{2}+3$

The graph of g is a reflection in the y-axis of the graph of f.

The graph of g is a vertical stretch by a factor of 3 of the graph of f.

Let the graph of g be a vertical stretch by a factor of 2 , followed by a translation 3 units up of the graph of $f(x)=x^{4}-2 x^{2}$. Write a rule for g.

SOLUTION

Step 1 First write a function h that represents the vertical stretch of f.

$$
\begin{aligned}
h(x) & =2 \cdot f(x) & & \text { Multiply the output by } 2 . \\
& =2\left(x^{4}-2 x^{2}\right) & & \text { Substitute } x^{4}-2 x^{2} \text { for } f(x) . \\
& =2 x^{4}-4 x^{2} & & \text { Distributive Property }
\end{aligned}
$$

Step 2 Then write a function g that represents the translation of h.

$$
\begin{aligned}
g(x) & =h(x)+3 & & \text { Add } 3 \text { to the output. } \\
& =2 x^{4}-4 x^{2}+3 & & \text { Substitute } 2 x^{4}-4 x^{2} \text { for } h(x) .
\end{aligned}
$$

The transformed function is $g(x)=2 x^{4}-4 x^{2}+3$.

EXAMPLE 5 Writing a Polynomial Model

$D_{\text {WATCH }}$
The function $V(x)=\frac{1}{3} x^{3}-x^{2}$ represents the volume (in cubic feet) of the square pyramid shown. The function $W(x)=V(3 x)$ represents the volume (in cubic feet) when x is measured in yards. Write a rule for W. Find and interpret $W(10)$.

SOLUTION

1. Understand the Problem You are given two volume functions V and W whose inputs have different units. The horizontal shrink shown by $W(x)=V(3 x)$ makes sense because there are 3 feet in 1 yard. You are asked to write a rule for W and interpret the output for a given input.
2. Make a Plan Write the transformed function W and then find $W(10)$.
3. Solve and Check $W(x)=V(3 x)$

$$
\begin{array}{ll}
=\frac{1}{3}(3 x)^{3}-(3 x)^{2} & \\
\text { Replace } x \text { with } 3 x \text { in } V(x) . \\
=9 x^{3}-9 x^{2} & \\
\text { Simplify. }
\end{array}
$$

Next, find $W(10)$.

$$
W(10)=9(10)^{3}-9(10)^{2}=9000-900=8100
$$

When x is 10 yards, the volume of the pyramid is 8100 cubic feet.

SELF-ASSESSMENT 1 Ido not understand. $2 \mid$ can do it with help. $3 \mid$ can do it on my own. $4 \mid$ can teach someone else.

6. Let $f(x)=x^{5}-4 x+6$ and $g(x)=-f(x)$. Write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.
7. Let the graph of g be a horizontal stretch by a factor of 2 , followed by a translation 3 units right of the graph of $f(x)=8 x^{3}+3$. Write a rule for g.
8. WHAT IF? In Example 5, the height of the pyramid is $6 x$ feet, and the volume (in cubic feet) is represented by $V(x)=2 x^{3}$. Write a rule for W. Find and interpret $W(7)$.

In Exercises 1-4, describe the transformation of f represented by g. Then graph each function.

D Example 1

1. $f(x)=x^{4}, g(x)=x^{4}+3$
2. $f(x)=x^{4}, g(x)=(x-5)^{4}$
3. $f(x)=x^{5}, g(x)=(x-2)^{5}-1$
4. $f(x)=x^{6}, g(x)=(x+1)^{6}-4$

ANALYZING RELATIONSHIPS

In Exercises 5-8, match the function with the correct transformation of the graph of f. Explain your reasoning.

5. $y=f(x-2)$
6. $y=f(x+2)+2$
7. $y=f(x-2)+2$
8. $y=f(x)-2$
A.

B.

C.

D.

In Exercises 9-14, describe the transformation of f represented by g. Then graph each function.
DExample 2
9. $f(x)=x^{4}, g(x)=-2 x^{4}$
10. $f(x)=x^{6}, g(x)=-\frac{1}{4} x^{6}$
11. $f(x)=x^{3}, g(x)=5 x^{3}+1$
12. $f(x)=x^{4}, g(x)=\frac{1}{2} x^{4}+5$
13. $f(x)=x^{5}, g(x)=\frac{3}{4}(x+4)^{5}$
14. $f(x)=x^{4}, g(x)=(3 x)^{4}-2$

In Exercises 15-20, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f. Example 3
15. $f(x)=x^{4}+1, g(x)=f(x+2)$
16. $f(x)=x^{6}-3 x^{3}+2, g(x)=f(x)-3$
17. $f(x)=x^{5}-2 x+3, g(x)=3 f(x)$
18. $f(x)=2 x^{3}-2 x^{2}+6, g(x)=-\frac{1}{2} f(x)$
19. $f(x)=x^{4}+x^{3}-1, g(x)=f(-x)-5$
20. $f(x)=\frac{1}{2} x^{5}+x^{3}-4 x-4, g(x)=-f(2 x)+1$
21. ERROR ANALYSIS Describe and correct the error in graphing the transformation of $f(x)=x^{4}$ represented by $g(x)=(x+2)^{4}-6$.

22. ERROR ANALYSIS Describe and correct the error in describing the transformation of $f(x)=x^{5}$ represented by $g(x)=(3 x)^{5}-4$.

The graph of g is a horizontal shrink by a factor of 3 , followed by a translation 4 units down of the graph of f.

In Exercises 23-26, write a rule for g that represents the indicated transformations of the graph of f.
\square Example 4
23. $f(x)=x^{3}-6$; translation 3 units left, followed by a reflection in the y-axis
24. $f(x)=x^{4}+2 x+6$; vertical stretch by a factor of 2 , followed by a translation 4 units right
25. $f(x)=x^{3}+2 x^{2}-9$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 2 units up, followed by a reflection in the x-axis
26. $f(x)=2 x^{5}-x^{3}+x^{2}+4$; reflection in the y-axis and a vertical stretch by a factor of 3 , followed by a translation 1 unit down
27. CONNECTING CONCEPTS The function $V(x)=x^{3}-4 x$ represents the volume (in cubic feet) of the pyramid. The function $W(x)=V(3 x)$ represents the volume (in cubic feet) of the pyramid when x is measured in yards. Write a rule for W. Find and interpret $W(5)$.

\square Example 5

$(2 x-4)$

28. CONNECTING CONCEPTS Write a function V for the volume (in cubic yards) of the right circular cone shown. Then write a function W that represents the volume (in cubic yards) of the cone when x is measured in feet. Find and interpret $W(3)$.
29. MAKING AN ARGUMENT The function $V(x)=x^{3}$ represents the volume of a cube with edge length x. Does the volume decrease by a greater amount when you divide the volume in half or when you divide each side length in half? Justify your answer.

REVIEW \& REFRESH

In Exercises 33 and 34, find the minimum value or maximum value of the function. Find the domain and range of the function, and when the function is increasing and decreasing.
33. $h(x)=(x+5)^{2}-7$
34. $f(x)=-2 x^{2}+4 x-1$
35. Find all the real zeros of
$f(x)=2 x^{3}-21 x^{2}+12 x+72$.
36. MODELING REAL LIFE The volume (in cubic feet) of a dog kennel in the shape of a rectangular prism can be modeled by $V=3 x^{3}-17 x^{2}+29 x-15$, where x is the length (in feet). Determine the values of x for which the model makes sense. Explain.

37. Write an equation in intercept form of the parabola that passes through $(-10,10)$ and has x-intercepts -11 and -5 .
30. HOW DO YOU SEE IT?

Describe the transformation of the graph of f represented by the graph of g.

GO DIGITAL

31. OPEN-ENDED Describe two transformations of $f(x)=x^{5}$ where the order in which the transformations are performed is important. Then describe two transformations where the order is not important. Explain your reasoning.

32. THOUGHT PROVOKING

Write a function g that has a y-intercept of -2 and is a transformation of $f(x)=-\frac{1}{4}\left(2 x^{2}-3\right)(x+2)^{2}$.

WATCH

38. How many solutions does $x^{4}+8 x^{2}-9=0$ have? Find all the solutions.

In Exercises 39-42, perform the operation. Write the answer in standard form.
39. $(12-4 i)+(1-i)$
40. $(3+8 i)-(-6+2 i)$
41. $7 i(5-3 i)$
42. $(9-11 i)(-2+4 i)$
43. Write an inequality that is represented by the graph.

44. Let $f(x)=-x^{4}+2 x^{2}-3$ and $g(x)=2 f(x)$. Write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.

In Exercises 45 and 46, graph the function and its parent function. Then describe the transformation.
45. $g(x)=|x+3|$
46. $h(x)=\frac{3}{2} x^{2}$

