4.3 WS 3

Write each equation in its exponential form.

1.
$$\frac{1}{2} = \log_{25} 5$$

2.
$$\log 10 = 1$$

3.
$$3 = \log_{\frac{3}{2}} \frac{27}{8}$$

4.
$$\log_7(x-2) = 3$$

Write each equation in its logarithmic form. Assume y > 0 and b > 0.

5.
$$e^2 = 7.389$$

6.
$$16^{\frac{1}{2}} = 4$$

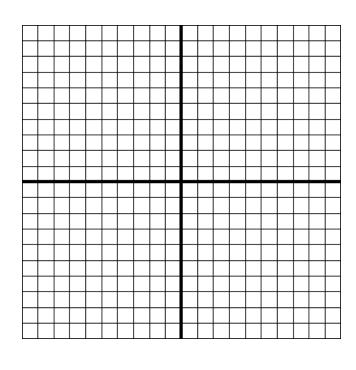
7.
$$5^3 = 125$$

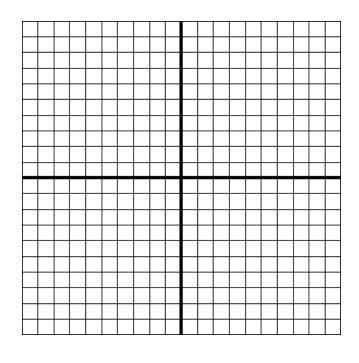
8.
$$x^2 + 3 = e^4$$

Evaluate each logarithmic expression. Do not use a calculator.

9.
$$\log_8 512$$

10.
$$\log_{13} 1$$


11.
$$-6\log_{\frac{1}{4}}64$$


12.
$$7(6^{\log_6 81})$$

Graph each function by using it exponential form.

13.
$$f(x) = \log_3 x$$

14.
$$f(x) = \log_{\frac{1}{5}} x$$

Find the domain of the function.

15.
$$k(x) = \log_{15}(x^2 - 8x + 15)$$
 16. $f(x) = \log(x^2 - 4)$ 17. $h(x) = \log_2(x - 2)$ 18. $g(x) = \log_7\left(\frac{1}{x + 10}\right)$

Explain how to use the graph of the first function to produce the graph of the second function.

19.
$$f(x) = \log_4 x$$
; $f(x) = \log_4 x + 5$

20.
$$f(x) = \log_8 x$$
; $f(x) = \log_8 (x-1)-4$

21.
$$f(x) = \log_{\frac{2}{3}} x$$
; $f(x) = \log_{\frac{2}{3}} (x+6)$

- 22. The function $N(x) = 2750 + 180 \ln \left(\frac{x}{1000} + 1 \right)$ models the relationship between the dollar amount x spent on advertising a product and the number of units N that a company can sell.
 - a. Find the number of units that will be sold with advertising expenditures of \$20,000, \$40,000, and \$60,000.

b. How many units will be sold if the company does not pay to advertise the product?