4.3 WS 3

Write each equation in its exponential form.

1. $\frac{1}{2}=\log _{25} 5$
2. $\log 10=1$
3. $3=\log _{\frac{3}{2}} \frac{27}{8}$
4. $\log _{7}(x-2)=3$

Write each equation in its logarithmic form. Assume $y>0$ and $b>0$.
5. $e^{2}=7.389$
6. $16^{1 / 2}=4$
7. $5^{3}=125$
8. $x^{2}+3=e^{4}$

Evaluate each logarithmic expression. Do not use a calculator.
9. $\log _{8} 512$
10. $\log _{13} 1$
11. $-6 \log _{1 / 4} 64$
12. $7\left(6^{\log _{6} 81}\right)$

Graph each function by using it exponential form.
13. $f(x)=\log _{3} x$
14. $f(x)=\log _{1 / 5} x$

Find the domain of the function.
15. $k(x)=\log _{15}\left(x^{2}-8 x+15\right)$
16. $f(x)=\log \left(x^{2}-4\right)$
17. $h(x)=\log _{2}(x-2)$
18. $g(x)=\log _{7}\left(\frac{1}{x+10}\right)$

Explain how to use the graph of the first function to produce the graph of the second function.
19. $f(x)=\log _{4} x ; f(x)=\log _{4} x+5$
20. $f(x)=\log _{8} x ; f(x)=\log _{8}(x-1)-4$
21. $f(x)=\log _{2 / 3} x ; f(x)=\log _{2 / 3}(x+6)$
22. The function $N(x)=2750+180 \ln \left(\frac{x}{1000}+1\right)$ models the relationship between the dollar amount x spent on advertising a product and the number of units N that a company can sell.
a. Find the number of units that will be sold with advertising expenditures of $\$ 20,000, \$ 40,000$, and $\$ 60,000$.
b. How many units will be sold if the company does not pay to advertise the product?

