Write each equation in its exponential form.

1. $2=\log _{8} 64$
2. $2=\log 100$
3. $\log _{5} 125=3$
4. $\ln x=7$

Write each equation in its logarithmic form. Assume $y>0$ and $b>0$.
5. $7^{2}=49$
6. $y=e^{x}$
7. $4^{3}=64$
8. $e^{5}=3 x+1$

Evaluate each logarithmic expression. Do not use a calculator.
9. $\log _{4} 16$
10. $\log _{3} 3$
11. $\log _{6} 1296$
12. $\log _{3} \frac{1}{243}$

Graph each function by using it exponential form.
13. $f(x)=\log _{6} x$
14. $f(x)=\log _{1 / 4} x$

Find the domain of the function.
15. $k(x)=\log _{2 / 3}(11-x)$
16. $f(x)=\ln \left(x^{2}-4\right)$
17. $h(x)=\log _{2}\left(\frac{x}{x+5}\right)$
18. $g(x)=\log _{7}\left(\frac{x+2}{x^{2}}\right)$

Explain how to use the graph of the first function to produce the graph of the second function.
19. $f(x)=\log _{4} x ; f(x)=\log _{4} x+5$
20. $f(x)=\log _{8} x ; f(x)=\log _{8}(x+1)$
21. $f(x)=\log _{2 / 3} x ; f(x)=\log _{2 / 3}(x-3)-2$
22. The function $r(t)=0.69607+0.60781 \ln t$ gives the annual interest rate r, as a percent, a bank will pay on its money market accounts, where t is the term (the time the money is invested) in months.
a. What interest rate, to the nearest tenth of percent, will the bank pay on a money market account with a term of 9 months?
b. What is the minimum number of complete months during which a person must invest to receive an interest rate of at least 3% ?

