4.2 WS 2

Evaluate the exponential function for the given \boldsymbol{x} values.

1. $f(x)=5^{x}$
a. $x=4$
b. $x=-3$
2. $g(x)=7^{x}$
a. $x=4$
b. $x=-2$
3. $f(x)=\left(\frac{2}{3}\right)^{x}$
a. $x=-3$
b. $x=2$
4. $g(x)=\left(\frac{1}{4}\right)^{x}$
a. $x=-2$
b. $x=4$

Use a calculator to evaluate the exponential function for the given \boldsymbol{x} value. Round to the nearest hundredth.
5. $f(x)=6^{x} ; x=2.5$
6. $h(x)=e^{x} ; x=\sqrt{2}$
7. $g(x)=4.6^{x} ; x=-3$

Sketch the graph of each function.

8. $f(x)=2^{x}$
9. $g(x)=\left(\frac{1}{2}\right)^{x}$
10. $h(x)=\left(\frac{2}{5}\right)^{x}$

Explain how to use the graph of the first function \boldsymbol{f} to produce the graph of the second function \boldsymbol{F}.
11. $f(x)=2^{x} ; F(x)=2^{x+7}$
12. $f(x)=4^{x} ; F(x)=4^{x}-4$
13. $f(x)=(3)^{x} ; F(x)=5(3)^{x}$
14. $f(x)=\left(\frac{1}{3}\right)^{x} ; F(x)=\left(\frac{1}{3}\right)^{-x}$
15. The monthly income I, in dollars, from a new product is given by $I(t)=8600-5500 e^{-0.005 t}$ where t is the time, in months, since the product was first put on the market.
a. What was the monthly income after the $10^{\text {th }}$ month and after the $100^{\text {th }}$ month?
b. What will the monthly income from the product approach as the time increases without bound?

Use the composition of functions to determine whether f and g are inverses of one another.
16. $f(x)=\frac{4}{-x-2}+2 ; g(x)=-\frac{1}{x+3}$
17. $f(x)=\frac{x+7}{2} ; g(x)=2 x-7$

Find the inverse of each function, then state the domain and range of $f^{-1}(x)$.
18. $f(x)=\sqrt[3]{2 x-4}$
19. $f(x)=\sqrt{x+8}$
20. $f(x)=\frac{x-9}{x}$

