Evaluate the exponential function for the given *x* values.

1.
$$f(x) = 5^{x}$$
 a. $x = 4$ b. $x = -3$ 2. $g(x) = 7^{x}$ a. $x = 4$ b. $x = -2$
3. $f(x) = \left(\frac{2}{3}\right)^{x}$ a. $x = -3$ b. $x = 2$ 4. $g(x) = \left(\frac{1}{4}\right)^{x}$ a. $x = -2$ b. $x = 4$

Use a calculator to evaluate the exponential function for the given *x* value. Round to the nearest hundredth.

5.
$$f(x) = 6^x$$
; $x = 2.5$
6. $h(x) = e^x$; $x = \sqrt{2}$
7. $g(x) = 4.6^x$; $x = -3$

Sketch the graph of each function.

Explain how to use the graph of the first function f to produce the graph of the second function F.

- 11. $f(x) = 2^x; F(x) = 2^{x+7}$
- 12. $f(x) = 4^x; F(x) = 4^x 4$

13.
$$f(x) = (3)^{x}; F(x) = 5(3)^{x}$$

14.
$$f(x) = \left(\frac{1}{3}\right)^x; F(x) = \left(\frac{1}{3}\right)^{-x}$$

15. The monthly income *I*, in dollars, from a new product is given by $I(t) = 8600 - 5500e^{-0.005t}$ where *t* is the time, in months, since the product was first put on the market.

a. What was the monthly income after the 10^{th} month and after the 100^{th} month?

b. What will the monthly income from the product approach as the time increases without bound?

Use the composition of functions to determine whether f and g are inverses of one another.

16.
$$f(x) = \frac{4}{-x-2} + 2; \ g(x) = -\frac{1}{x+3}$$
 17. $f(x) = \frac{x+7}{2}; \ g(x) = 2x-7$

Find the inverse of each function, then state the domain and range of $f^{-1}(x)$.

18. $f(x) = \sqrt[3]{2x-4}$ 19. $f(x) = \sqrt{x+8}$ 20. $f(x) = \frac{x-9}{x}$