4.1 WS 3

Use the composition of functions to determine whether f and g are inverses of one another.

1. $f(x)=-2 x+5 ; g(x)=\frac{x-5}{-2}$
2. $f(x)=\sqrt[3]{x}-5 ; g(x)=(x+5)^{3}$
3. $f(x)=4 x+1 ; g(x)=\frac{1}{2} x+\frac{1}{4}$
4. $f(x)=\frac{2 x}{x-1} ; g(x)=\frac{x}{x-3}$

Find the inverse function of the one-to-one function given.
5. $f(x)=\{(-3,1),(-2,2),(1,5),(4,-7)\}$
6. $g(x)=\{(0,1),(1,2),(2,4),(3,8),(4,16)\}$

Find the inverse of each function, then state the domain and range of $f^{-1}(x)$.
7. $f(x)=4 x-8$
8. $f(x)=\frac{x}{x-2}$
9. $f(x)=\sqrt{x-2}$
10. $f(x)=\frac{x-7}{2 x-1}$
11. The function $K(x)=1.3 x-4.7$ converts a men's shoe size in the United States to the equivalent shoe size in the United Kingdom. Determine the function $K^{-1}(x)$ that can be used to convert a U.K. mesn's shoesize to its equivalent U.S. shoe size.
12. A catering service uses the function $c(x)=\frac{300+12 x}{x}$ to determine the amount, in dollars, it charges per person for a sit-down dinner; where x is the number people in attendance..
a. Find $\mathrm{c}(30)$ and explain what it represents.
b. Find $c^{-1}(x)$.
c. Use to determine how many people attended a dinner for which the cost person was $\$ 15$.

