3.2 Complex Numbers

Learning Target	Understand the imaginary unit <i>i</i> and perform operations with complex numbers.
Success Criteria	 I can define the imaginary unit <i>i</i> and use it to rewrite the square root of a negative number. I can add, subtract, and multiply complex numbers.

• I can find complex solutions of quadratic equations and complex zeros of quadratic functions.

EXPLORE IT! Using Complex Numbers

Work with a partner.

a. A student solves the equations below as shown. Justify each solution step.

Math Practice

Look for Structure How can you recognize when a quadratic equation of the form $x^2 + c = 0$ will have solutions that are not real numbers?

i.	ii.	
$x^2 = 36$ Original equation $x = \pm \sqrt{36}$	$x^2 = -9$ $x = \pm \sqrt{-9}$	Original equation
x = ±6	$x = \pm \sqrt{9} \sqrt{-1}$	
	$x = \pm 3\sqrt{-1}$	

- **b.** In your study of mathematics, you have probably worked with only real numbers, which can be represented graphically on the real number line. Describe the solutions of the equation $x^2 = c$ when c > 0, when c = 0, and when c < 0.
- **c.** The solutions of the equation $x^2 = -9$ are *imaginary numbers*, and are typically written as 3i and -3i. Explain what *i* represents. What is the value of i^2 ?
- **d.** In this lesson, the system of numbers is expanded to include imaginary numbers. The real numbers and imaginary numbers compose the set of *complex numbers*. Complete the diagram that shows the relationships among the number systems shown below.

e. Determine which subsets of numbers in part (d) contain each number.

i. $\sqrt{9}$ ii. $\sqrt{0}$ iii. $-\sqrt{4}$ iv. $\sqrt{\frac{4}{9}}$ v. $\sqrt{2}$ vi. $\sqrt{-1}$

Vocabulary

imaginary unit *i*, *p*. 100 complex number, *p*. 100 imaginary number, *p*. 100 pure imaginary number, *p*. 100 complex conjugates, *p*. 102

AZ

VOCAB

The Imaginary Unit i

Not all quadratic equations have real-number solutions. For example, $x^2 = -3$ has no real-number solutions because the square of any real number

x = -5 has no real-number solutions b is never a negative number.

To overcome this problem, mathematicians created an expanded system of numbers using the **imaginary unit** *i*, defined as $i = \sqrt{-1}$. Note that $i^2 = -1$. The imaginary unit *i* can be used to write the square root of *any* negative number.

) KEY IDEA

Property

Example $\sqrt{-3} = \sqrt{-1}\sqrt{3} = i\sqrt{3}$

- 1. If *r* is a positive real number, then $\sqrt{-r} = \sqrt{-1}\sqrt{r} = i\sqrt{r}$.
- $(i\sqrt{3})^2 = i^2 \cdot 3 = -1 \cdot 3 = -3$

 $-5\sqrt{-9}$

2. By the first property, it follows that $(i\sqrt{r})^2 = i^2 \cdot r = -r$.

EXAMPLE 1 Finding Square Roots of Negative Numbers

Find the square root of each number.

a.
$$\sqrt{-25}$$
 b. $\sqrt{-72}$ **c.**

SOLUTION

a.
$$\sqrt{-25} = \sqrt{25} \cdot \sqrt{-1} = 5i$$

b. $\sqrt{-72} = \sqrt{72} \cdot \sqrt{-1} = \sqrt{36} \cdot \sqrt{2} \cdot i = 6\sqrt{2} i = 6i\sqrt{2}$
c. $-5\sqrt{-9} = -5\sqrt{9} \cdot \sqrt{-1} = -5 \cdot 3 \cdot i = -15i$

A **complex number** written in *standard form* is a number a + bi, where a and b are real numbers. The number a is the *real part*, and the number bi is the *imaginary part*.

WORDS AND MATH Numbers of the form a + bi are called *complex* because they have more than one part.

If $b \neq 0$, then a + bi is an **imaginary number**. If a = 0 and $b \neq 0$, then a + bi is a **pure imaginary number**. The diagram shows how different types of complex numbers are related.

Complex Numbers (a + bi)			
Real Numbers (a + 0i)	Imaginary Numbers ($a + bi$, $b \neq 0$)		
-1 $\frac{5}{3}$ π $\sqrt{2}$	$2 + 3i 9 - 5i$ Pure Imaginary Numbers $(0 + bi, b \neq 0)$ $-4i 6i$		

Two complex numbers a + bi and c + di are equal if and only if a = c and b = d.

WATCH

EXAMPLE 2 Equality of Two Complex Numbers

Find the values of x and y that satisfy the equation 2x - 7i = 10 + yi.

SOLUTION

Set the real parts equal to each other and the imaginary parts equal to each other.

	2x = 10	Equate the real parts.	-7i = yi	Equate the imaginary parts.	
	x = 5	Solve for <i>x</i> .	-7 = y	Solve for <i>y</i> .	
	So, $x = 5$ an	d y = -7.			
SELF-ASSESSMENT	1 I do not understand. 2	I can do it with help.	3 I can do it on my own	. 4 I can teach someone else.	
1. VOCABULARY Define the imaginary unit <i>i</i> and explain how you use it.					
2. VOCABULARY Identify the imaginary part and the real part of the complex number $5 - 2i$.					
Find the square root of the number.					
3. $\sqrt{-4}$	4. $\sqrt{-12}$	5. $-\sqrt{-3}$	6	6. $2\sqrt{-54}$	
Find the values of x and y that satisfy the equation.					
7. $x + 3i = 9 - yi$	8. 5 <i>x</i> +	-4i = 20 + 2yi	9. 9 + 4	4yi = -2x + 3i	

Operations with Complex Numbers

) KEY IDEA

Sums and Differences of Complex Numbers

To add (or subtract) two complex numbers, add (or subtract) their real parts and their imaginary parts separately.

Sum of complex numbers:	(a + bi) + (c + di) = (a + c) + (b + d)i
Difference of complex numbers:	(a + bi) - (c + di) = (a - c) + (b - d)i

EXAMPLE 3 Adding and Subtracting Complex Numbers

Add or subtract. Write the answer in standard form.

a. (8 - i) + (5 + 4i) **b.** (7 - 6i) - (3 - 6i)

SOLUTION

a. $(8 - i) + (5 + 4i) = (8 + 5) + (-1 + 1)$	- 4) <i>i</i> Definition of complex addition
= 13 + 3i	Write in standard form.
b. $(7 - 6i) - (3 - 6i) = (7 - 3) + (-6)$	+ 6) <i>i</i> Definition of complex subtraction
= 4 + 0i	Simplify.
= 4	Write in standard form.

WATCH

To multiply two complex numbers, use the Distributive Property, or the FOIL Method, just as you do when multiplying real numbers or algebraic expressions.

EXAMPLE 4

Multiplying Complex Numbers

Multiply. Write the answer in standard form.

a.
$$4i(-6+i)$$

b. (9-2i)(-4+7i)

SOLUTION

a. 4 <i>i</i> (-6 -	$+i) = -24i + 4i^2$	Distributive Property
	= -24i + 4(-1)	Use $i^2 = -1$.
	= -4 - 24i	Write in standard form.
b. (9 – 2 <i>i</i>	$(-4+7i) = -36+63i+8i-14i^2$	Multiply using FOIL.
	= -36 + 71i - 14(-1)	Simplify and use $i^2 = -1$.
	= -36 + 71i + 14	Simplify.
	= -22 + 71i	Write in standard form.

Pairs of complex numbers of the forms a + bi and a - bi, where $b \neq 0$, are called **complex conjugates**. Consider the product of complex conjugates below.

$(a + bi)(a - bi) = a^2 - (ab)i + (ab)i - b^2i^2$	Multiply using FOIL.
$=a^2-b^2(-1)$	Simplify and use $i^2 = -1$.
$= a^2 + b^2$	Simplify.

Because a and b are real numbers, $a^2 + b^2$ is a real number. So, the product of complex conjugates is a real number.

EXAMPLE 5 Multiplying Complex Conjugates

Multiply 5 + 2i by its complex conjugate.

SOLUTION

The complex conjugate of 5 + 2i is 5 - 2i.

Method 1 Use the FOIL Method.

$(5+2i)(5-2i) = 25 - 10i + 10i - 4i^2$	Multiply using FOIL.
= 25 - 4(-1)	Simplify and use $i^2 = -1$.
= 29	Simplify.

Method 2 Use the pattern shown above, $(a + bi)(a - bi) = a^2 + b^2$ where a = 5 and b = 2.

$$(5+2i)(5-2i) = 5^2 + 2^2$$

= 25 + 4
= 29
Add.

STUDY TIP

When simplifying an expression that involves

complex numbers, be

- sure to simplify i^2 as -1.

Modeling Real Life

Electrical circuit components, such as resistors, inductors, and capacitors, all oppose the flow of current. This opposition is called *resistance* for resistors and *reactance* for inductors and capacitors. Each of these quantities is measured in ohms. The symbol used for ohms is Ω , the uppercase Greek letter omega.

Component and symbol	Resistor	Inductor	Capacitor
Resistance or reactance (in ohms)	R	L	С
Impedance (in ohms)	R	Li	-Ci

The table shows the relationship between a component's resistance or reactance and its contribution to impedance. A *series circuit* is also shown with the resistance or reactance of each component labeled. The impedance for a series circuit is the sum of the impedances for the individual components. Find the impedance of the series circuit.

Alternating current source

SOLUTION

The resistor has a resistance of 5 ohms, so its impedance is 5 ohms. The inductor has a reactance of 3 ohms, so its impedance is 3i ohms. The capacitor has a reactance of 4 ohms, so its impedance is -4i ohms.

Impedance of circuit = 5 + 3i + (-4i)

$$= 5 - i$$

The impedance of the circuit is (5 - i) ohms.

SELF-ASSESSMENT	1 I do not understand. 2 I can do it with help. 3	I can do it on my own. 4 I can teach someone else.		
Add or subtract. Write the	e answer in standard form.			
10. $(9 - i) + (-6 + 7i)$	11. $(3+7i) - (8-2i)$	12. $-4 - (1 + i) - (5 + 9i)$		
13. $5 + (-9 + 3i) + 6i$	14. $(2-i) + (1+i) - 7i$	15. $8i - (6 - 3i) + (4 - 4i)$		
16. OPEN-ENDED Write tw	wo complex numbers with a difference of 9.			
Multiply. Write the answe	r in standard form.			
17. (-3 <i>i</i>)(10 <i>i</i>)	18. $i(8-i)$	19. $(3+i)(5-i)$		
Multiply the complex number by its complex conjugate.				
20. 1 + <i>i</i>	21. 4 - 7 <i>i</i>	22. $-3 - 2i$		

23. WHAT IF? In Example 6, what is the impedance of the circuit when the capacitor is replaced with one having a reactance of 7 ohms?

Complex Solutions and Zeros

WATCH

EXAMPLE 7 Solving Quadratic Equations

Solve (a) $x^2 + 4 = 0$ and (b) $2x^2 - 11 = -47$.

SOLUTION

a. $x^2 + 4 = 0$ Write original equation. $x^2 = -4$ Subtract 4 from each side. $x = \pm \sqrt{-4}$ Take square root of each side. $x = \pm 2i$ Write in terms of *i*. The solutions are 2i and -2i. **b.** $2x^2 - 11 = -47$ Write original equation. $2x^2 = -36$ Add 11 to each side. $x^2 = -18$ Divide each side by 2. $x = \pm \sqrt{-18}$ Take square root of each side. $x = \pm i\sqrt{18}$ Write in terms of *i*. $x = \pm 3i\sqrt{2}$ Simplify radical.

The solutions are $3i\sqrt{2}$ and $-3i\sqrt{2}$.

SELF-ASSESSMENT	1 I do not understand. 2 I d	can do it with help. 3 I ca	an do it on my own.	I can teach someone else.
Solve the equation.				
24. $x^2 = -13$	25. $x^2 - 8 = -36$	26. $3x^2 - 7 = -$	27. 5 <i>.</i>	$x^2 + 33 = 3$
Find the zeros of the fun	ction.			
28. $f(x) = x^2 + 7$	29. $f(x) = -$	$-x^2 - 4$	30. $f(x) = 9x^2$	+ 1

Math Practice

Math Practice

to factor $x^2 + 4$?

Look for Structure

How can you use the

solutions in Example 7(a)

Use a Graph

A quadratic function without real zeros must have imaginary zeros. How can you use a graph to determine whether a quadratic function has imaginary zeros?

3.2 Practice WITH CalcChat® AND CalcVIEW®

In Exercises 1–8, find the square root of the number. *Example 1*

1. $\sqrt{-36}$	2. $\sqrt{-64}$
3. $\sqrt{-18}$	4. $\sqrt{-24}$
5. $2\sqrt{-16}$	6. $-3\sqrt{-49}$
7. $-4\sqrt{-32}$	8. $6\sqrt{-63}$

In Exercises 9–16, find the values of *x* and *y* that satisfy the equation. *Example 2*

9. 4x + 2i = 8 + yi10. 3x + 6i = 27 + yi11. -10x + 12i = 20 + 3yi12. 9x - 18i = -36 + 6yi13. 2x - yi = 14 + 12i14. -12x + yi = 60 - 13i15. $54 - \frac{1}{7}yi = 9x - 4i$ 16. $15 - 3yi = \frac{1}{2}x + 2i$

In Exercises 17–26, add or subtract. Write the answer in standard form. *Example 3*

17.	(6-i) + (7+3i)	18.	(9+5i) + (11+2i)
19.	(12 + 4i) - (3 - 7i)	20.	(2 - 15i) - (4 + 5i)
21.	(12 - 3i) + (7 + 3i)	22.	(16 - 9i) - (2 - 9i)
23.	7 - (3 + 4i) + 6i	24.	16 - (2 - 3i) - i

- **25.** -10 + (6 5i) 9i **26.** -3 + (8 + 2i) + 7i
- **27. MP STRUCTURE** Write each expression as a complex number in standard form.
 - **a.** $\sqrt{-9} + \sqrt{-4} \sqrt{16}$ **b.** $\sqrt{-16} + \sqrt{8} + \sqrt{-36}$
- **28.** MP **REASONING** The additive inverse of a complex number z is a complex number z_a such that $z + z_a = 0$. Find the additive inverse of each complex number.

a.
$$z = 1 + i$$

b. $z = 3 - i$
c. $z = -2 + 8i$

In Exercises 29–36, multiply. Write the answer in standard form. *Example 4*

29.	3i(-5+i)	30.	2i(7-i)
31.	(3 - 2i)(4 + i)	32.	(7 + 5i)(8 - 6i)
33.	(5-2i)(-2-3i)	34.	(-1 + 8i)(9 + 3i)
35.	$(3-6i)^2$	36.	$(8 + 3i)^2$

ERROR ANALYSIS In Exercises 37 and 38, describe and correct the error in performing the operation and writing the answer in standard form.

37.

$$(3+2i)(5-i) = 15 - 3i + 10i - 2i^{2}$$

$$= 15 + 7i - 2i^{2}$$

$$= -2i^{2} + 7i + 15$$
38.

$$(4+6i)^{2} = (4)^{2} + (6i)^{2}$$

$$= 16 + 36i^{2}$$

$$= 16 + (36)(-1)$$

$$= -20$$

In Exercises 39–46, multiply the complex number by its complex conjugate. *Example 5*

39. 1 - <i>i</i>	40. 8 + <i>i</i>
41. 4 + 2 <i>i</i>	42. 5 - 6 <i>i</i>
43. $-2 + 2i$	44. -1 - 9 <i>i</i>
45. $-3 - 5i$	46. $-7 + 4i$

MP REASONING In Exercises 47 and 48, use the given numbers to complete the equation.

MODELING REAL LIFE In Exercises 49–52, find the impedance of the series circuit. *Example 6*

JUSTIFYING STEPS In Exercises 53 and 54, justify each step in performing the operation.

53.
$$11 - (4 + 3i) + 5i$$

$$= [(11 - 4) - 3i] + 5i$$

$$= (7 - 3i) + 5i$$

$$= 7 + (-3 + 5)i$$

$$= 7 + 2i$$
54. $(3 + 2i)(7 - 4i)$

$$= 21 - 12i + 14i - 8i^{2}$$

$$= 21 + 2i - 8(-1)$$

$$= 21 + 2i + 8$$

= 29 + 2i

In Exercises 55–60, solve the equation. **>** *Example 7*

55.	$x^2 + 9 = 0$	56.	$x^2 + 49 = 0$
57.	$x^2 - 4 = -11$	58.	$x^2 - 9 = -15$
59.	$2x^2 + 6 = -34$	60.	$x^2 + 7 = -47$

61.	$f(x) = 3x^2 + 6$	62.	$g(x) = 7x^2 + 21$
63.	$h(x) = 2x^2 + 72$	64.	$k(x) = -5x^2 - 125$

- **66.** $p(x) = x^2 + 98$
- **67.** $r(x) = -\frac{1}{2}x^2 24$ **68.** $f(x) = -\frac{1}{5}x^2 10$
- **69. MP STRUCTURE** Expand $(a bi)^2$ and write the result in standard form. Use your result to check your answer to Exercise 35.
- **70. MP STRUCTURE** Expand $(a + bi)^2$ and write the result in standard form. Use your result to check your answer to Exercise 36.
- **71. MP NUMBER SENSE** Write the complex conjugate of $1 \sqrt{-12}$. Then find the product of the complex conjugates.
- **72. MP NUMBER SENSE** Simplify each expression. Then classify your results in the table below.

a.
$$(-4+7i) + (-4-7i)$$

b.
$$(2-6i) - (-10+4i)$$

- **c.** (25 + 15i) (25 6i)
- **d.** (5+i)(8-i)
- **e.** (17 3i) + (-17 6i)
- **f.** (-1+2i)(11-i)
- **g.** (7+5i) + (7-5i)
- **h.** (-3 + 6i) (-3 8i)

lmaginary numbers	Pure imaginary numbers
	Imaginary numbers

73. MP STRUCTURE The coordinate system shown below is called the *complex plane*. In the complex plane, the point that corresponds to the complex number a + bi is (a, b). Match each complex number with its corresponding point.

74. COMPARING METHODS Describe the methods shown for writing the complex expression in standard form. Which method do you prefer? Explain.

Method 1

$$4i(2-3i) + 4i(1-2i) = 8i - 12i^2 + 4i - 8i^2$$

 $= 8i - 12(-1) + 4i - 8(-1)$
 $= 20 + 12i$

Method 2

$$4i(2-3i) + 4i(1-2i) = 4i[(2-3i) + (1-2i)]$$

= $4i[3-5i]$
= $12i - 20i^2$
= $12i - 20(-1)$
= $20 + 12i$

In Exercises 75–80, write the expression as a complex number in standard form.

- **75.** (3+4i) (7-5i) + 2i(9+12i)
- **76.** 3i(2+5i) + (6-7i) (9+i)
- **77.** $(3+5i)(2-7i^4)$
- **78.** $2i^3(5-12i)$
- **79.** $(2+4i^5) + (1-9i^6) (3+i^7)$
- **80.** $(8 2i^4) + (3 7i^8) (4 + i^9)$
- **81. MP PATTERNS** Make a table that shows the powers of *i* from i^1 to i^8 in the first row and the simplified forms of these powers in the second row. Describe the pattern you observe in the table. Then use the pattern to evaluate i^{25} , i^{50} , i^{75} , and i^{100} .

82. HOW DO YOU SEE IT?

The graphs of three functions are shown. Which function(s) have real zeros? imaginary zeros? Explain your reasoning.

- **83. MP NUMBER SENSE** Write each product as a complex number in standard form.
 - **a.** $(2 3i)^3$
 - **b.** $(3 + i)^4$
- **84. MP REASONING** Is it possible for a quadratic equation to have one real solution and one imaginary solution? Explain your reasoning.
- **85.** COLLEGE PREP Which expressions are equivalent to 1 + i? Select all that apply.

(A)
$$(4-i) - (3+2i)$$

- (C) (2-i)(i+1)
- **D** $i^{20} i^{21}$
- **86. MP NUMBER SENSE** Write a pair of complex numbers whose sum is -4 and whose product is 53.
- **87. JUSTIFYING STEPS** Justify each step in the simplification of i^2 .

Algebraic Step	Justification
$i^2 = (\sqrt{-1})^2$	
= -1	

- **88.** MAKING AN ARGUMENT Your friend claims that the conclusion in Exercise 87 is incorrect because $i^2 = i \cdot i = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{-1(-1)} = \sqrt{1} = 1$. Is your friend correct? Explain.
- **89. CRITICAL THINKING** Rewrite each expression with a real denominator.

a.
$$\frac{1+3i}{2i}$$
 b. $\frac{4-2i}{1+i}$

- **90. MP** LOGIC The sum of two complex numbers is 7 + 8i. The difference of the numbers is 1 2i. What is the product of the numbers?
- **91. CRITICAL THINKING** Determine whether each statement is true or false. If it is true, give an example. If it is false, give a counterexample.
 - **a.** The sum of two imaginary numbers is always an imaginary number.
 - **b.** The product of two pure imaginary numbers is always a real number.
 - c. A pure imaginary number is an imaginary number.
 - **d.** A complex number is a real number.

- **92.** CRITICAL THINKING The zeros of a quadratic function are $3 \pm 4i$.
 - **a.** What do you know about the vertex of the function? Explain.
 - **b.** Write and graph a quadratic function that has these zeros.
- **93. DIG DEEPER** Write \sqrt{i} as a complex number in standard form. (*Hint:* Use the equation $\sqrt{i} = a + bi$ to write a system of equations in terms of *a* and *b*.)
- **94. THOUGHT PROVOKING** Create a circuit that has an impedance of 14 - 3i.

REVIEW & REFRESH

In Exercises 95 and 96, graph the function and its parent function. Then describe the transformation.

95.
$$f(x) = \frac{1}{4}x^2 + 1$$
 96. $f(x) = -\frac{1}{2}x - 4$

In Exercises 97 and 98, simplify the expression. Write your answer using only positive exponents.

97. $\left(\frac{4c^4d^{-5}}{8c^0d^4}\right)^2$ 98. $\left(\frac{3}{2}\right)^2$	$\frac{3m^{-5}}{m^{-6}n}\Big)^3 \bullet \left(\frac{-4m^3n^{-1}}{2mn^{-7}}\right)$	4
--	--	---

99. Write a quadratic function in vertex form whose graph is shown.

100. MP **REASONING** Find the zeros of the function $f(x) = 9x^2 + 2$. Does the graph of the function intersect the *x*-axis? Explain your reasoning.

In Exercises 101 and 102, write an equation of the parabola with the given characteristics.

101. focus: (0, −2)	102. vertex: (5, -4)
directrix: $y = 2$	directrix: $x = 2$

103. Make a scatter plot of the data. Then describe the relationship between the data.

x	4	2	7	5	2	6	3	5
у	37	62	45	79	29	18	55	64

104. Find the circumference of the circle.

105. MODELING REAL LIFE A screen printing shop sells long-sleeved shirts and short-sleeved shirts. Order A includes 3 long-sleeved shirts and 12 short-sleeved shirts for a total cost of \$165. Order B includes 8 long-sleeved shirts and 2 short-sleeved shirts for a total cost of \$140. What is the cost of each type of shirt?

In Exercises 106–109, add, subtract, or multiply. Write the answer in standard form.

106. $-3i(9-4i)$	107. $(7 + 8i) - (-4 + 9i)$

100.(5 2i)(1 12i) $109.(15 i) + (0 + 5i)$	108. ((5 –	2i)(1 -	- 12 <i>i</i>)	109.	(-15	- <i>i</i>)	+ (6	+ 3i
---	--------	------	---------	-----------------	------	------	--------------	------	------

In Exercises 110 and 111, write an inequality that represents the graph.

110.												
				Ψ								
	-5	-4	-3	-2	-1	0	1	2	3	4	5	
111												
	3	4	5	6	7	8	9	10	11	12	13	

In Exercises 112 and 113, find the inverse of the function. Then graph the function and its inverse.

112.
$$f(x) = -3x + 6$$
 113. $f(x) = 2x^2 - 18, x \ge 0$

114. Use the graph to solve $x^2 - 10x + 25 = 0$.

In Exercises 115 and 116, graph the system. Identify a solution, if possible.

115. $y > x - 1$	116. $x + y \le 3$
$y \leq -4$	$y + 2 \ge -4x$

